Уточнить поиск
Результаты 1-10 из 105
SOIL PHYSICO-CHEMICAL CHANGES FOLLOWING APPLICATION OF MUNICIPAL SOLID WASTE LEACHATES TO GRASSLANDS
2006
Gros, Raphaël | Poulenard, Jérôme | Jocteur-Monrozier, Lucile | Faivre, Pierre | Institut Méditerranéen d'Ecologie et de Paléoécologie (IMEP) ; Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Avignon Université (AU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire des Sciences du Sol ; Centre Interdisciplinaire Scientifique de la Montagne (CISM) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
Concerns about the use of residues from municipal solid waste incinerators (MSWI) in construction materials usually focus on the potential for heavy metals and organic chemicals to leach into drainage waters under the influence of rain.We hypothesised that high level of salts in the MSWI leachates may cause more of a problem, particularly on soil physico-chemical properties. Both bottom ash (BA) and Solidified Air Pollution Control residue (SAPCr) leachates were added to experimental grassland plots. The amounts of Na+ increased by up to 13% in soils supplemented with each leachate. A decrease of the soil total porosity (−14%) was evidence of a subsequent adverse physical effect of this strong salinity. The potential for the grass cover type (species composition or density) to limit this adverse effect was discussed. Laboratory tests allowed us to determine that undiluted SAPCr induced slaking of aggregates accompanied by a strong decrease of aggregate stability, to 49% of control values. Undiluted BA induced dispersion of clays and others fine particles, which are then dislodged and transported into pores, causing blockage and decreasing total porosity. Clay dispersion followed by aggregate collapse occurred when soil solution contaminated by SAPCr was diluted by rainwater. This work stressed the importance of accounting for mineral contaminants, such as salts, when conducting an assessment of waste reuse scenarios.
Показать больше [+] Меньше [-]Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy
2018
Liu, Shasha | Zhu, Yuanrong | Liu, Leizhen | He, Zhongqi | Giesy, John P. | Bai, Yingchen | Sun, Fuhong | Wu, Fengchang
Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage.
Показать больше [+] Меньше [-]Stabilizing mixed fatty acid and phthalate ester monolayer on artificial seawater
2018
Li, Siyang | Du, Lin | Zhang, Qingzhu | Wang, Wenxing
Phthalate esters which are widely used as industrial chemicals have become widespread contaminants in the marine environment. However, little information is available on the interfacial behavior of phthalate esters in the seawater, where contaminants generally occur at elevated concentrations and have the potential to transfer into the atmosphere through wave breaking on sea surface. We used artificial seawater coated with fatty acids to simulate sea surface microlayer in a Langmuir trough. The interactions of saturated fatty acids (stearic acid (SA) and palmitic acid (PA)) with one of the most abundant phthalate esters (di-(2-ethylhexyl) phthalate (DEHP)), were investigated under artificial seawater and pure water conditions. Pure DEHP monolayer was not stable, while more stable mixed monolayers were formed by SA and DEHP on the artificial seawater at relatively low surface pressure. Sea salts in the subphase can lower the excess Gibbs free energy to form more stable mixed monolayer. Among the ten components in the sea salts, Ca²⁺ ions played the major role in condensation of mixed monolayer. The condensed characteristic of the mixed SA (or PA)/DEHP monolayers suggested that the hydrocarbon chains were ordered on artificial seawater. By means of infrared reflection-absorption spectroscopy (IRRAS), we found that multiple sea salt mixtures induced deprotonated forms of fatty acids at the air–water interface. Sea salts can improve the stability and lifetime of mixed fatty acid and phthalate ester monolayer on aqueous droplets in the atmosphere. Interfacial properties of mixed fatty acid and phthalate ester monolayers at the air–ocean interface are important to help understand their behavior and fate in the marine environment.
Показать больше [+] Меньше [-]Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function
2016
Durenkamp, Mark | Pawlett, Mark | Ritz, K. (Karl) | Harris, Jim A. | Neal, Andrew L. | McGrath, Steve P.
One of the main pathways by which engineered nanoparticles (ENPs) enter the environment is through land application of waste water treatment plant (WWTP) sewage sludges. WWTP sludges, enriched with Ag and ZnO ENPs or their corresponding soluble metal salts during anaerobic digestion and subsequently mixed with soil (targeting a final concentration of 1400 and 140 mg/kg for Zn and Ag, respectively), were subjected to 6 months of ageing and leaching in lysimeter columns outdoors. Amounts of Zn and Ag leached were very low, accounting for <0.3% and <1.4% of the total Zn and Ag, respectively. No differences in total leaching rates were observed between treatments of Zn or Ag originally input to WWTP as ENP or salt forms. Phospholipid fatty acid profiling indicated a reduction in the fungal component of the soil microbial community upon metal exposure. However, overall, the leachate composition and response of the soil microbial community following addition of sewage sludge enriched either with ENPs or metal salts was very similar.
Показать больше [+] Меньше [-]Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function
2011
George, S.J. | Sherbone, J. | Hinz, C. | Tibbett, M.
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.
Показать больше [+] Меньше [-]Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches
2011
Karraker, Nancy E. | Gibbs, James P.
It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations.
Показать больше [+] Меньше [-]Toxicity of road salt to Nova Scotia amphibians
2009
Collins, Sara J. | Russell, Ronald W.
The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC50) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands.
Показать больше [+] Меньше [-]Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)
2009
Sorensen, Mary A. | Parker, David R. | Trumble, John T.
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4-), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.
Показать больше [+] Меньше [-]Effects of a brine discharge over soft bottom Polychaeta assemblage
2008
Del-Pilar-Ruso, Yoana | De-la-Ossa-Carretero, Jose Antonio | Giménez-Casalduero, Francisca | Sánchez Lizaso, José Luis
Desalination is a growing activity that has introduced a new impact, brine discharge, which may affect benthic communities. Although the role of polychaetes as indicators to assess organic pollution is well known, their tolerance to salinity changes has not been examined to such a great extent. The aim of this study was to examine the effect of brine discharge over soft bottom polychaete assemblage along the Alicante coast (Southeast Spain) over a two year period. Changes in the polychaete assemblage was analysed using univariate and multivariate techniques. We compared a transect in front of the discharge with two controls. At each transect we sampled at three depths (4, 10 and 15 m) during winter and summer. We have observed different sensitivity of polychaete families to brine discharges, Ampharetidae being the most sensitive, followed by Nephtyidae and Spionidae. Syllidae and Capitellidae showed some resistance initially, while Paraonidae proved to be a tolerant family. The Polychaete assemblage is affected by the brine discharge of the Alicante desalination plant and we detect different sensitivity levels in polychaete families to brine impact.
Показать больше [+] Меньше [-]Adsorption of perfluoroalkyl substances on microplastics under environmental conditions
2018
Llorca, Marta | Schirinzi, Gabriella | Martinez, Monica | Barceló, Damià | Farré, Marinella
Plastic debris has become an environmental problem during recent years. Among the plastic debris, microplastics (<5 mm; MPLs) imply an extra problem due to their capacity to enter into the fauna through ingestion. In this work, we study the capacity of three MPLs, that include high-density polyethylene (HDPE), polystyrene (PS) and polystyrene carboxylate (PS-COOH), to sorb 18 perfluoroalkyl substances (PFASs; including carboxylic acids, sulphonates and one sulphonamide) from the surrounding waters (freshwater and seawater).Conclusions drawn from the results are that perfluoro sulphonates and sulphonamides have more tendency to be sorbed onto MPLs. In addition, PS and PS-COOH have more affinity for PFASs than HDPE. Finally, the increment of conductivity and pH of the water decreases the exposure time that is necessary to reach equilibrium. However, the presence of salts decreases the tendency of PFASs to be sorbed onto plastic surfaces. These results highlight the problem associated with the presence of MPLs in inland and marine waters since toxic compounds can be sorbed onto surrounding plastics that could be ingested by aquatic fauna.
Показать больше [+] Меньше [-]