Уточнить поиск
Результаты 1-4 из 4
Lipid-content-normalized polycyclic aromatic hydrocarbons (PAHs) in the xylem of conifers can indicate historical changes in regional airborne PAHs
2015
Kuang, Yuan-wen | Li, Jiong | Hou, En-qing
The temporal variation of polycyclic aromatic hydrocarbons (PAHs) concentrations as well as the lipid content in the xylem of Masson pine trees sampled from the same site were determined and compared with the days of haze occurrence and with the historical PAHs reported in sedimentary cores. The patterns of the lipid content as well as the PAH concentrations based on the xylem dry weight (PAHs-DW) decreased from the heartwood to the sapwood. The trajectories of PAHs normalized by xylem lipid content (PAHs-LC) coincided well with the number of haze-occurred days and were partly similar with the historical changes in airborne PAHs recorded in the sedimentary cores. The results indicated that PAHs-LC in the xylem of conifers might reliably reflect the historical changes in airborne PAHs at a regional scale. The species-specificity should be addressed in the utility and application of dendrochemical monitoring on historical and comparative studies of airborne PAHs.
Показать больше [+] Меньше [-]Urbanization intensifies tree sap flux but divergently for different tree species groups in China
2022
Ouyang, Lei | Du, Jie | Zhang, Zhenzhen | Zhao, Ping | Zhu, Liwei | Ni, Guangyan
In recent years, positive and negative effects of urbanization on forest ecosystem have been reported by many studies, while some uncertainties about the impact of urbanization-induced spatial heterogeneity of environmental factors on forest systems still remain unclear. In this study, we analyzed the urbanization effects on sap flux of a common subtropical evergreen tree species Schima superba along an urban–rural gradient in Guangdong Province, South China, and identified the consistency of these results among different groups (evergreen, deciduous, and coniferous species) using data from 83 previously published studies in China. The mean sap flux density (Fd) of S. superba in Xiaoqingshan (XQS), Heshan (HS), Dinghushan (DHS), and Shimentai (SMT), along the urban–rural gradient was 40.9 g m⁻² s⁻¹, 32.1 g m⁻² s⁻¹, 17.0 g m⁻² s⁻¹, and 17.5 g m⁻² s⁻¹, respectively, presenting a decreasing trend with the diminishing urbanization. This pattern in Fd tended to enlarge with tree size and was well confirmed by the enhanced leaf transpiration rate (by 119%) and photosynthetic rate (by 8.8%) for the S. superba in another urbanization gradient from the urban (Hangzhou, denoted as “HZ”) to rural sites (Jiande, denoted as “JD”) in Zhejiang Province, East China, which has similar climatic condition and urbanization with Guangdong Province. We attributed such positive effects to the decreased sapwood density and specific leaf area (SLA), as well as the increased Huber value (sap wood area/leaf area) and the sap wood specific hydraulic conductivity (KS). We also found that pollutant emission exerted more impact on Fd than climatic factors change, since the variation of the latter was not large enough to cause significant change of Fd under the same climatic zone. In addition, we conducted a principal component analysis (PCA) based on the published 83 studies. Results showed Fd of evergreen tree species was related positively to principle 1 and negatively to principle 2, respectively, whereas the Fd of deciduous broadleaf and coniferous tree species was positively and negatively related to both principles, respectively. This study demonstrated the potential impact of urbanization-related pollutant emission changes on water use of forest trees and the growth among different groups.
Показать больше [+] Меньше [-]Effects of crown decline on increment in Norway spruce (Picea abies (L.) Karst) in southern Sweden
1989
Bjoerkdahl, G. | Eriksson, H. (Swedish Univ. of Agricultural Sciences, Garpenberg (Sweden). Dep. of Forest Yield Research)
Synergistic effect of heartwood extracts in combination with linseed oil as wood preservatives against subterranean termite Heterotermes indicola (Blattodea: Rhinotermitidae)
2020
Hassan, Babar | Aḥmad, Suhail | Kirker, Grant | Mankowski, Mark E. | Misbah ul Haq, Muhammad
This study evaluated the effect of wood extracts from Tectona grandis, Dalbergia sissoo, Cedrus deodara, and Pinus roxburghii combined with linseed oil as protectants of two non-durable wood species against the termite, Heterotermes indicola. Heartwood blocks (19 × 19 × 19 mm) and wood shavings were extracted using an ethanol/toluene (2:1) solvent system. Results of choice and no-choice tests with solvent-extracted and non-extracted heartwood blocks showed greater wood mass loss from termite feeding on solvent-extracted blocks compared with non-extracted blocks for all wood species. Significantly higher termite mortality was observed after termite exposure to non-extracted blocks compared with extracted blocks for all durable species. Sapwood blocks of two non-durable wood species (southern pine and cottonwood) were vacuum/pressure impregnated separately with each of the four types of extract at a concentration of 7.5 mg ml⁻¹, linseed oil (20%) and a mixture of oil (20%) and extracts (4.25 mg ml⁻¹) for the laboratory and field tests. Results showed that extract-oil mixture imparted significantly higher termite resistance compared with linseed or extracts alone under laboratory conditions. This apparent synergistic effect was clearly noted when linseed oil was combined with extracts from T. grandis or D. sissoo followed by an extract-oil mixture using C. deodara. These extract oil mixtures showed significantly less weight loss for the treated non-durable wood species and higher termite mortality (83–100%) compared with the control treatments and other extract-linseed oil mixtures tested. Treatment of both non-durable wood species with T. grandis + oil and D. sissoo + oil prevented termite damage compared with other treatments when blocks and stakes were exposed in the field for a period of 2 years. Results of the current study indicated that a mixture of a particular heartwood extract with linseed oil has potential to be used as environmentally friendly wood protectants.
Показать больше [+] Меньше [-]