Уточнить поиск
Результаты 1-10 из 95
Anthocyanin-mediated arsenic tolerance in plants
2022
Ahammed, Golam Jalal | Yang, Youxin
Plants detoxify toxic metal(loid)s by accumulating diverse metabolites. Beside scavenging excess reactive oxygen species (ROS) induced by metal(loid)s, some metabolites chelate metal(loid) ions. Classically, thiol-containing compounds, especially glutathione (GSH) and phytochelatins (PCs) are thought to be the major chelators that conjugate with metal(loid)s in the cytoplasm followed by transport and sequestration in the vacuole. In addition to this classical detoxification pathway, a role for secondary metabolites in metal(loid) detoxification has recently emerged. In particular, anthocyanins, a kind of flavonoids with ROS scavenging potential, contribute to enhanced arsenic tolerance in several plant species. Evidence is accumulating that, in analogy to GSH and PCs, anthocyanins may conjugate with arsenic followed by vacuolar sequestration in the detoxification event. Exogenous application or endogenous accumulation of anthocyanins enhances arsenic tolerance, leading to improved plant growth and productivity. The application of some plant hormones and signaling molecules stimulates endogenous anthocyanin synthesis which confers tolerance to arsenic stress. Anthocyanin biosynthesis is transcriptionally regulated by several transcription factors, including myeloblastosis (MYBs). The light-regulated transcription factor elongated hypocotyl 5 (HY5) also affects anthocyanin biosynthesis, but its role in arsenic tolerance remains elusive. Here, we review the mechanism of arsenic detoxification in plants and the potential role of anthocyanins in arsenic tolerance beyond the classical points of view. Our analysis proposes that anthocyanin manipulation in crop plants may ensure sustainable crop yield and food safety in the marginal lands prone to arsenic pollution.
Показать больше [+] Меньше [-]Effect of microbial community structures and metabolite profile on greenhouse gas emissions in rice varieties
2022
Ding, Huina | Liu, Tianqi | Hu, Quanyi | Liu, Min | Cai, Mingli | Jiang, Yang | Cao, Cougui
Rice paddy fields are major sources of atmospheric methane (CH₄) and nitrous oxide (N₂O). Rice variety is an important factor affecting CH₄ and N₂O emissions. However, the interactive effects of rice metabolites and microorganisms on CH₄ and N₂O emissions in paddy fields are not clearly understood. In this study, a high greenhouse gas-emitting cultivar (YL 6) and a low greenhouse gas-emitting cultivar (YY 1540) were used as experimental materials. Metabolomics was used to examine the roots, root exudates, and bulk soil metabolites. High-throughput sequencing was used to determine the microbial community composition. YY 1540 had more secondary metabolites (flavonoids and isoflavonoids) in root exudates than YL 6. It was enriched with the uncultured members of the families Gemmatimonadanceae and Rhizobiales_Incertae_Sedis in bulk soil, and genera Burkholderia-Caballeronia-Paraburkholderia, Magnetospirillum, Aeromonas, and Anaeromyxobacter in roots, contributing to increased expression of pmoA and nosZ genes and reducing CH₄ and N₂O emissions. YL 6 roots and root exudates contained higher contents of carbohydrates [e.g., 6-O- acetylarbutin and 2-(3- hydroxyphenyl) ethanol 1′-glucoside] than those of YY 1540. They were enriched with genera RBG-16-58-14 in bulk soil and Exiguobacterium, and uncultured member of the Kineosporiaceae family in roots, which contributed to increased expression of mcrA, ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nirS, and nirK genes and greenhouse gas emissions. In general, these results established a link between metabolites, microorganisms, microbial functional genes, and greenhouse gas emissions. The metabolites of root exudates and roots regulated CH₄ and N₂O emissions by influencing the microbial community composition in bulk soil and roots.
Показать больше [+] Меньше [-]Rapid uptake and slow depuration: Health risks following cyanotoxin accumulation in mussels?
2021
Camacho-Muñoz, Dolores | Waack, Julia | Turner, Andrew D. | Lewis, Adam M. | Lawton, Linda A. | Edwards, Christine
Freshwater cyanobacteria produce highly toxic secondary metabolites, which can be transported downstream by rivers and waterways into the sea. Estuarine and coastal aquaculture sites exposed to toxic cyanobacteria raise concerns that shellfish may accumulate and transfer cyanotoxins in the food web. This study aims to describe the competitive pattern of uptake and depuration of a wide range of microcystins (MC-LR, MC-LF, MC-LW, MC-LY, [Asp3]-MC-LR/[Dha7]-MC-LR, MC-HilR) and nodularins (NOD cyclic and linear) within the common blue mussel Mytilus edulis exposed to a combined culture of Microcystis aeruginosa and Nodularia spumigena into the coastal environment.Different distribution profiles of MCs/NODs in the experimental system were observed. The majority of MCs/NODs were present intracellularly which is representative of healthy cyanobacterial cultures, with MC-LR and NOD the most abundant analogues. Higher removal rate was observed for NOD (≈96%) compared to MCs (≈50%) from the water phase. Accumulation of toxins in M. edulis was fast, reaching up to 3.4 μg/g shellfish tissue four days after the end of the 3-days exposure period, with NOD (1.72 μg/g) and MC-LR (0.74 μg/g) as the dominant toxins, followed by MC-LF (0.35 μg/g) and MC-LW (0.31 μg/g). Following the end of the exposure period depuration was incomplete after 27 days (0.49 μg/g of MCs/NODs). MCs/NODs were also present in faecal material and extrapallial fluid after 24 h of exposure with MCs the main contributors to the total cyanotoxin load in faecal material and NOD in the extrapallial fluid. Maximum concentration of MCs/NODs accumulated in a typical portion of mussels (20 mussels, ≈4 g each) was beyond greater the acute, seasonal and lifetime tolerable daily intake. Even after 27 days of depuration, consuming mussels harvested during even short term harmful algae blooms in close proximity to shellfish beds might carry a high health risk, highlighting the need for testing.
Показать больше [+] Меньше [-]Simultaneous Microcystis algicidal and microcystin synthesis inhibition by a red pigment prodigiosin
2020
Wei, Jia | Xie, Xian | Huang, Feiyu | Xiang, Lin | Wang, Yin | Han, Tongrui | Massey, Isaac Yaw | Liang, Geyu | Pu, Yuepu | Yang, Fei
Microcystis blooms and their secondary metabolites microcystins (MCs) occurred all over the world, which have damaged aquatic ecosystems and threatened public health. Techniques to reduce the Microcystis blooms and MCs are urgently needed. This study aimed to investigate the algicidal and inhibitory mechanisms of a red pigment prodigiosin (PG) against the growth and MC-producing abilities of Microcystis aeruginosa (M. aeruginosa). The numbers of Microcystis cells were counted under microscope. The expression of microcystin synthase B gene (mcyB) and concentrations of MCs were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme linked immunosorbent assay (ELISA) methods, respectively. The inhibitory effects of PG against M. aeruginosa strain FACHB 905 with 50% algicidal concentration (LC50) at 120 h was 0.12 μg/mL. When M. aeruginosa cells exposed to 0.08 μg/mL, 0.16 μg/mL, 0.32 μg/mL PG, the expression of mcyB of M. aeruginosa was down-regulated 4.36, 8.16 and 18.51 times lower than that of the control at 120 h. The concentrations of total MC (TMC) also were 1.66, 1.72 and 5.75 times lower than that of the control at 120 h. PG had high algicidal effects against M. aeruginosa, with the activities of superoxide dismutase (SOD) initially increased and then decreased after 72 h, the contents of malondialdehyde (MDA) increase, the expression of mcyB gene down-regulation, and MCs synthesis inhibition. This study was first to report the PG can simultaneously lyse Microcystis cells, down-regulate of mcyB expression and inhibit MCs production effectively probably due to oxidative stress, which indicated PG poses a great potential for regulating Microcystis blooms and MCs pollution in the environment.
Показать больше [+] Меньше [-]Responsiveness change of biochemistry and micro-ecology in alkaline soil under PAHs contamination with or without heavy metal interaction
2020
Wang, Can | Luo, Yao | Tan, Hang | Liu, Huakang | Xu, Fei | Xu, Heng
Co-presence of organic pollutants and heavy metals in soil is causing increasing concerns, but the lack of knowledge of relation between soil ecology and pollutant fate is limiting the developing of specific control strategy. This study investigated soil change under pyrene stress and its interaction with cadmium (Cd). Soil physicochemical properties were not seriously influenced. However, pollutants’ presence easily varied soil microbial activity, quantity, and diversity. Under high-level pyrene, Cd presence contributed to soil indigenous microorganisms’ adaption and soil microbial community structure stability. Soils with both pyrene and Cd presented 7.11–12.0% higher pyrene degradation compared with single pyrene treatment. High-throughput sequencing analysis indicated the proportion of Mycobacterium sp., a commonly known PAHs degrader, increased to 25.2–48.5% in treatments from 0.52% in control. This phenomenon was consistent with the increase of PAHs probable degraders (the ratio increased to 2.86–6.57% from 0.24% in control). Higher Cd bioavailability was also observed in soils with both pollutants than that with Cd alone. And Cd existence caused the elevation of Cd resistant bacterium Limnobacter sp. (increased to 12.2% in CdCK from 2.06% in control). Functional gene prediction also indicated that abundance of genes related to nutrient metabolism decreased dramatically with pollutants, while the abundances of energy metabolism, lipid metabolism, secondary metabolites biosynthesis-related genes increased (especially for aromatic compound degradation related genes). These results indicated the mutual effect and internal-interaction existed between pollutants and soils resulted in pollutants’ fate and soil microbial changes, providing further information regarding pollutants dissipation and transformation under soil microbial response.
Показать больше [+] Меньше [-]Temperature alters susceptibility of Picea abies seedlings to airborne pollutants: The case of CdO nanoparticles
2019
Večeřová, Kristýna | Večeřa, Zbyněk | Mikuška, Pavel | Coufalík, Pavel | Oravec, Michal | Dočekal, Bohumil | Novotna, Katerina | Veselá, Barbora | Pompeiano, Antonio | Urban, Otmar
Although plants are often exposed to atmospheric nanoparticles (NPs), the mechanism of NP deposition and their effects on physiology and metabolism, and particularly in combination with other stressors, are not yet understood. Exploring interactions between stressors is particularly important for understanding plant responses in urban environments where elevated temperatures can be associated with air pollution. Accordingly, 3-year-old spruce seedlings were exposed for 2 weeks to aerial cadmium oxide (CdO) NPs of environmentally relevant size (8–62 nm) and concentration (2 × 10⁵ cm⁻³). While half the seedlings were initially acclimated to high temperature (35 °C) and vapour pressure deficit (VPD; 2.81 kPa), the second half of the plants were left under non-stressed conditions (20 °C, 0.58 kPa). Atomic absorption spectrometry was used to determine Cd content in needles, while gas and liquid chromatography was used to determine changes in primary and secondary metabolites. Photosynthesis-related processes were explored with gas-exchange and chlorophyll fluorescence systems. Our work supports the hypothesis that atmospheric CdO NPs penetrate into leaves but high temperature and VPD reduce such penetration due to stomatal closure. The hypothesis that atmospheric CdO NPs influences physiological and metabolic processes in plants was also confirmed. This impact strengthens with increasing time of exposure. Finally, we found evidence that plants acclimated to stress conditions have different sensitivity to CdO NPs compared to plants not so acclimated. These findings have important consequences for understanding impacts of global warming on plants and indicates that although the effects of elevated temperatures can be deleterious, this may limit other forms of plant stress associated with air pollution.
Показать больше [+] Меньше [-]Mycotoxins induce developmental toxicity and behavioural aberrations in zebrafish larvae
2018
Khezri, Abdolrahman | Herranz-Jusdado, Juan G. | Ropstad, Erik | Fraser, Thomas WK.
Mycotoxins are secondary metabolites produced by varieties of fungi that contaminate food and feed resources and are capable of inducing a wide range of toxicity. In the current study, we investigated developmental and behavioural toxicity in zebrafish larvae after exposure to six different mycotoxins; ochratoxin A (OTA), type A trichothecenes mycotoxin (T-2 toxin), type B trichothecenes mycotoxin (deoxynivalenol - DON), and zearalenone (ZEN) and its metabolites alpha-zearalenol (α-ZOL) and beta-zearalenol (β-ZOL). Developmental defects, hatching time, and survival were monitored until 96 h post fertilisation (hpf). The EC₅₀, LC₅₀, and IC₅₀ values were calculated. Subsequently, to assess behavioural toxicity, new sets of embryos were exposed to a series of non-lethal doses within the range of environmental and/or developmental concern. Results indicated that all the tested mycotoxins were toxic, they all induced developmental defects, and with the exception of OTA, all affected hatching time. Behavioural effects were only observed following exposure to OTA and ZEN and its metabolites, α ZOL and β ZOL. These results demonstrate that mycotoxins are teratogenic and can influence behaviour in a vertebrate model.
Показать больше [+] Меньше [-]Effects of low-levels of three hexabromocyclododecane diastereomers on the metabolic profiles of pak choi leaves using high-throughput untargeted metabolomics approach
2018
Zhang, Yanwei | Guo, Qiqi | Tan, Dongfei | He, Zeying | Wang, Yuehua | Liu, Xiaowei
The ecological toxicity of hexabromocyclododecane (HBCD) on animals, including fish and mice, has been reported, but its effects in plants, particularly its toxic mechanism, have rarely been investigated. An untargeted metabolomics approach for comprehensive assessment was selected to study the alterations in the metabolic profiles in pak choi leaves induced by exposure to trace-level amounts of HBCD diastereomers over 30 days. A supervised orthogonal partial least-squares-discriminant analysis (OPLS-DA) was performed to investigate differences between the HBCD and control groups. The discriminating metabolites were identified using public databases. The results indicated that the toxicity of the HBCD diastereomers was ordered as γ-HBCD > α-HBCD > β-HBCD. 13 metabolites were identified as potential biomarkers to discriminate the presence of HBCD toxicity. The lipid, carbohydrate, nucleotide and amino acid metabolic pathways affected were found in accordance with animals and humans, and also HBCD could induce the interference of the secondary metabolite pathways. The system of the stress defences was activated, including signalling pathway, antioxidant defence system, shikimate and phenylpropanoid metabolism. The carbohydrate and amino acid metabolism were disturbed by HBCD intervention, and the lipid, amino acid and secondary metabolite metabolism were regulated for HBCD stress prevention. These results provide insights into the mechanism and degree of HBCD phytotoxicity.
Показать больше [+] Меньше [-]Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers
2022
Hua, Yongbiao | Ahmadi, Younes | Sonne, Christian | Kim, Ki Hyun
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Показать больше [+] Меньше [-]Microcystin-LR promotes zebrafish (Danio rerio) oocyte (in vivo) maturation by activating ERK1/2-MPF signaling pathways, and cAMP is involved in this process
2020
Zhan, Chunhua | Zhang, Feng | Liu, Wanjing | Zhang, Xuezhen
Cyanobacterial blooms and their secondary metabolites, microcystins (MCs), are not only toxic to aquatic organisms, but also to humans. MCs exert reproductive toxicity in female fish by affecting the oocyte development. However, the mechanism behind MC-LR interference in oocyte development remains largely unknown. In our study, adult female zebrafish were exposed to MC-LR (0, 1, 5, 20 μg/L) for 30 d. After exposure to MC-LR for 30 d, fertilized eggs from the treated females and healthy males were collected and cultured in water without MC-LR. Histomorphological observations showed pathological damage in the ovary after MC-LR exposure, which was mainly characterized by enlarged intercellular spaces, detachment of follicular cells from oocytes, and vacuolation of parenchymal tissues. The 20 μg/L MC-LR treatment caused a remarkable increase in the rate of the zebrafish oocytes germinal vesicle breakdown (GVBD) and a significant decrease in the levels of cyclic adenosine monophosphate (cAMP) and vitellogenin (VTG). In addition, the phosphorylation levels of the extracellular signal-regulated kinases (ERK) were elevated in ovaries from zebrafish exposed to 5 and 20 μg/L MC-LR, and cyclinB phosphorylation levels were also upregulated notably in the 20 μg/L MC-LR group. However, MC-LR exposure did not cause any change in the levels of cAMP-dependent protein kinase (PKA) protein and cdc2 phosphorylation in all the treatments. All the doses of MC-LR reduced the number of eggs, prematurely hatched the fertilized eggs and increased the abnormal rate of offspring generation. In summary, the present study demonstrates that MC-LR promotes oocyte maturation by activating the ERK1/2 and MPF signaling pathways, and cAMP is involved in this process.
Показать больше [+] Меньше [-]