Уточнить поиск
Результаты 1-5 из 5
Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations
2019
Lu, Jingzhao | Lu, Hongwei | Li, Jing | Liu, Jia | Feng, Sansan | Guan, Yanlong
As one of the most cost-effective and sustainable methods for contaminants' removal, sequestration and/or detoxification, phytoremediation has already captured comprehensive attention worldwide. Nevertheless, the accurate effects of various spatial pattern in enhancing phytoremediation efficiency is not yet clear, especially for the polluted mining areas. This study designed nine planting patterns (monocropping, double intercropping and triple intercropping) of three indigenous plant species (Setaria viridis (L.), Echinochloa crus-galli (L.) and Phragmites australis (Cav.) Trin. ex Steud.) to further explore the effects of plants spatial pattern on phytoremediation efficiency. Considering the uncertainties of the residual contaminants' concentration (RCC) caused by soil anisotropy, permeability and land types, the interval transformation was introduced into the plant uptake model to simulate the remediation efficiency. Then multi-criteria decision analysis (MCDA) were applied to optimal the planting patterns, with the help of criteria of (a) the amount of heavy metal absorption; (b) the concentration of residual contaminant in soil; (c) root tolerance of heavy metals; (d) the total investment cost. Results showed that (1) the highest concentrations of Zn, Cd, and Pb of the polluted area were 7320.02, 14.30, 1650.51 mg kg⁻¹ (2) During the 180 days simulation, the highest RMSE of residue trace metals in soil are 3.02(Zn), 2.67(Pb), 2.89(Cd), respectively. (3) The result of IMCDA shows that the planting patterns of Setaria viridis, Echinochloa crus-galli and Phragmites australis in alternative a9 (269 mg kg⁻¹ year⁻¹) had the highest absorption rate of heavy metals compared with a7 (235 mg kg⁻¹ year⁻¹) and a2 (240 mg kg⁻¹ year⁻¹). After 20 years of remediation, the simulated RCC in a9 is far below the national standard, and the root toxicity is 0.12 (EC ≤ EC₂₀). In general, the optimal alternative derived from interval residual contaminant concentration can effectively express the dynamic of contaminant distribution and then can be effectively employed to evaluate the sustainable remediation methods.
Показать больше [+] Меньше [-]Exchange pattern of gaseous elemental mercury in landfill: mercury deposition under vegetation coverage and interactive effects of multiple meteorological conditions
2017
Tao, Zhengkai | Liu, Yang | Zhou, Meng | Chai, Xiaoli
Landfill is known as a potential source of atmospheric Hg and an important component of the local or regional atmospheric Hg budget. This study investigated the gaseous elemental Hg surface–air fluxes under differing conditions at a typical municipal solid waste landfill site, highlighting the interactive effects of plant coverage and meteorological conditions. The results indicated that Hg fluxes exhibited a feature represented by diel variation. In particular, Hg deposition was observed under a condition of Kochia sieversiana coverage, whereas emission that occurred after K. sieversiana was removed. Hg emission was the dominant mode under conditions of Setaria viridis coverage and its removal; however, the average Hg emission flux with the S. viridis coverage was nearly four times lower than after its removal. These findings verified that the plant coverage should be a key factor influencing the Hg emission from landfills. In addition, Hg fluxes were correlated positively with solar radiation and air/soil temperature and correlated inversely with relative humidity under all conditions, except K. sieversiana coverage. This suggested that the interactive effects of meteorological conditions and plant coverage played a jointly significant role in the Hg emission from landfills. It was established that K. sieversiana can inhibit Hg emission efficiently, and therefore, it could potentially be suitable for use as a plant-based method to control Hg pollution from landfills.
Показать больше [+] Меньше [-]Toxic metal tolerance in native plant species grown in a vanadium mining area
2017
Aihemaiti, Aikelaimu | Jiang, Jianguo | Li, De’an | Li, Tianran | Zhang, Wenjie | Ding, Xutong
Vanadium (V) has been extensively mined in China and caused soil pollution in mining area. It has toxic effects on plants, animals and humans, posing potential health risks to communities that farm and graze cattle adjacent to the mining area. To evaluate in situ phytoremediation potentials of native plants, V, chromium, copper and zinc concentrations in roots and shoots were measured and the bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. The results showed that Setaria viridis accumulated greater than 1000 mg kg⁻¹ V in its shoots and exhibited TF > 1 for V, Cr, Zn and BAF > 1 for Cu. The V accumulation amount in the roots of Kochia scoparia also surpassed 1000 mg kg⁻¹ and showed TF > 1 for Zn. Chenopodium album had BAF > 1 for V and Zn and Daucus carota showed TF > 1 for Cu. Eleusine indica presented strong tolerance and high metal accumulations. S. viridis is practical for in situ phytoextractions of V, Cr and Zn and phytostabilisation of Cu in V mining area. Other species had low potential use as phytoremediation plant at multi-metal polluted sites, but showed relatively strong resistance to V, Cr, Cu and Zn toxicity, can be used to vegetate the contaminated soils and stabilise toxic metals in V mining area.
Показать больше [+] Меньше [-]Plant community characteristics and their responses to environmental factors in the water level fluctuation zone of the three gorges reservoir in China
2013
Zhang, Zhiyong | Wan, Chengyan | Zheng, Zhiwei | Hu, Lian | Feng, Kun | Chang, Jianbo | Xie, Ping
The annual water level regulating of the Three Gorges Reservoir prolonged the submerged duration (from 2 to 8 months) and resulted in the reversal of natural flood rhythms (winter submerged). These changes might alter plant community characteristics in the water level fluctuation zone (WLFZ). The aim of this study was to determine the plant community characteristics in the WLFZ and their responses to the environmental factors (i.e., annual hydrological regulation, topographic characteristics, soil physical properties and soil nutrients). The height, coverage, frequency and biomass of each plant species and the soil properties at each elevation zone (150, 155, 160, 165 and 170 m) were measured from March to September in 2010. Univariate two-factor analysis and redundancy analysis (RDA) were used to analyze the spatial and temporal variations of the community characteristics and identify the key environmental factors influencing vegetation. We found that 93.2 % of the species analysed were terrestrial vascular plants. Annual herbs made up the highest percentage of life forms at each altitude. The differences in the species number per square metre, the Shannon-Wiener diversity index and the biomass of vegetation demonstrated statistical significance with respect to sampling time but not elevation. The most dominant species at altitudes of 150, 155, 160, 165 and 170 m were Cynodon dactylon, Cyperus rotundus, Digitaria sanguinalis, Setaria viridis and Daucus carota, respectively. The concentrations of soil nutrients appeared to be the lowest at an altitude of 150 m, although the differences with respect to elevation were not significant. The results of the RDA indicated that the key factors that influenced the species composition of vegetation were elevation, slope, pH and the concentration of soil available phosphorus.
Показать больше [+] Меньше [-]Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste
2017
Ram Chandra, | Winīta Kumāra,
The safe disposal of post-methanated distillery sludge (PMDS) in the environment is challenging due to high concentrations of heavy metals along with other complex organic pollutants. The study has revealed that PMDS contained high amounts of Fe (2403), Zn (210), Mn (126), Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425 mg kg⁻¹) along with melanoidins and other co-pollutants. The phytoextraction pattern in 15 potential native plants growing on sludge showed that the Blumea lacera, Parthenium hysterophorous, Setaria viridis, Chenopodium album, Cannabis sativa, Basella alba, Tricosanthes dioica, Amaranthus spinosus L., Achyranthes sp., Dhatura stramonium, Sacchrum munja and Croton bonplandianum were noted as root accumulator for Fe, Zn and Mn, while S. munja, P. hysterophorous, C. sativa, C. album, T. dioica, D. stramonium, B. lacera, B. alba, Kalanchoe pinnata and Achyranthes sp. were found as shoot accumulator for Fe. In addition, A. spinosus L. was found as shoot accumulator for Zn and Mn. Similarly, all plants found as leaf accumulator for Fe, Zn and Mn except A. spinosus L. and Ricinus communis. Further, the BCF of all tested plants were noted <1, while the TF showed >1. This revealed that metal bioavailability to plant is poor due to strong complexation of heavy metals with organic pollutants. This gives a strong evidence of hyperaccumulation for the tested metals from complex distillery waste. Furthermore, the TEM observations of root of P. hysterophorous, C. sativa, Solanum nigrum and R. communis showed formation of multi-nucleolus, multi-vacuoles and deposition of metal granules in cellular component of roots as a plant adaptation mechanism for phytoextraction of heavy metal-rich polluted site. Hence, these native plants may be used as a tool for in situ phytoremediation and eco-restoration of industrial waste-contaminated site.
Показать больше [+] Меньше [-]