Уточнить поиск
Результаты 1-4 из 4
Assessment of plastic pollution in the Bohai Sea: Abundance, distribution, morphological characteristics and chemical components
2021
Xu, Lili | Cao, Liang | Huang, Wei | Liu, Jinhu | Dou, Shuozeng
Plastics are globally distributed in oceans and can pose a threat to the environment and organisms. In this study, plastic pollution in surface water and sediments of the Bohai Sea was assessed based on plastic abundance, distribution and characteristics (shape, polymer, size and color). Water and sediment samples were collected across the sea using a plankton net (330 μm) and a grab sampler, respectively. The following conclusions were reached. 1) In surface water, large plastics were less abundant (0.14 items/m³) and showed less diverse characteristics than microplastics (0.79 items/m³) but did not significantly differ in spatial distribution. 2) Microplastics in water were more abundant (1.95 items/m³) with more diverse characteristics in Liaodong Bay than in other regions of the sea (0.26–0.59 items/m³). Plastic waste from highly concentrated agricultural, industrial and fishery activities could make large contributions to microplastics in Liaodong Bay. Additionally, low hydrodynamics and long distance to Bohai Strait are unfavorable for diffusion of particles, facilitating the retention of microplastics and increasing the abundance in this bay. 3) Microplastics in sediments were smaller in terms of dominant sizes (<0.5 mm) with less diverse characteristics than particles in water (0.5–1.5 mm). Specifically, fragments, foams and lines dominated among the microplastics in water, whereas fibers and fragments were dominant particles in sediments; alkyd resin, polyethylene, polystyrene and polypropylene (PP) predominated among the particles in water, but rayon, cellulose and PP were dominant particles in sediments. 4) Neither abundance nor size of microplastics in the two media was proportionally correlated and showed low similarity indexes of polymer (0.16), shape (0.29) or color (0.38). This could be related to mismatch in spatiotemporal distributions and variations in the characteristics, fate and behavior of microplastics in the two media. The findings provide knowledge for tracing the sources of plastics in the Bohai Sea.
Показать больше [+] Меньше [-]Marine protected area design patterns in the Mediterranean Sea: Implications for conservation
2016
Rodríguez-Rodríguez, D. | Rodríguez, J. | Blanco, J.M. | Abdul Malak, D.
Mediterranean marine protected area (MPA) design patterns regarding geographic distribution, size, spacing and shape were analysed as a proxy of the region's MPA's ecological effectiveness and a first step towards an ecologically coherent MPA network.Results for legally designated MPAs and ecologically functional MPAs accounting for overlaps are presented. Geographically, Mediterranean MPA area is very unevenly distributed, with four-fifths concentrated in just three countries of the north-western part of the basin. Average distance between functional MPAs lies within recommended ecological thresholds, which suggests adequate potential connectivity of the Mediterranean MPA system. Mediterranean designated MPAs are larger than MPAs worldwide on average, although they are generally smaller than international guidance suggests at different levels: ecoregion, country and designation category. On average, Mediterranean designated and functional MPAs have relatively high compactness, which makes them prone to spillover and adequate viability, and less vulnerable to edge effects.
Показать больше [+] Меньше [-]Gas–Solute Dispersivity Ratio in Granular Porous Media as Related to Particle Size Distribution and Particle Shape
2013
Pugliese, Lorenzo | Poulsen, Tjalfe G. | Straface, Salvatore
Measurements of solute dispersion in porous media is generally much more time consuming than gas dispersion measurements performed under equivalent conditions. Significant time savings may therefore, be achieved if solute dispersion coefficients can be estimated based on measured gas dispersion data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O₂ and NaCl as gas and solute tracers, respectively. Three different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined by fitting the advection–dispersion equation to the measured breakthrough curves and in turn used to calculate gas and solute dispersivities as a function of mean particle size (D ₘ) and particle size range (R) for the 63 particle size fractions considered. The results show that solute and gas dispersivities are related and that their ratio depends on both R and D ₘ. Based on these observations a simple model for predicting the dispersivity ratio from D ₘ and R, was proposed.
Показать больше [+] Меньше [-]The Effects of Glycine on Breakpoint Chlorination and Chlorine Dosage Control Methods for Chlorination and Chloramination Processes in Drinking Water
2013
Hui, Tao | Feng, Xu | Wei, Chen | Min, Sun | Liang, Zhen | Bo, Feng
Chlorine is the most commonly used chemical for water and wastewater disinfection worldwide, and it reacts with both ammonia and dissolved organic nitrogen. Using the salicylate spectrophotometric method, effects of glycine on the classic breakpoint chlorination are studied using glycine as a surrogate for dissolved organic nitrogen. The results show that the shape of the breakpoint chlorination curve with glycine was analogous to that of water without glycine. Increasing the glycine concentration moves the chlorination breakpoint curve to the right, demonstrating that more chlorine must be added to replace the chlorine consumed by glycine and yield the desired residual active chlorine concentration. At the peak of the chlorination breakpoint curve, both NH₂Cl and mono-chlorinated organic chloramine reach their maximum. The Cl₂/N ratio of the peak is linearly related to the glycine concentration, and our calculations indicate that the maximum of mono-chlorinated organic chloramine formation by glycine chlorination occurs at a stoichiometric ratio of 1:1; the same as that for chlorinating ammonia to NH₂Cl. The distribution of NH₂Cl and organic chloramines is controlled by [Gly]/[NH₃-N]. At the breakpoint, ammonia and glycine are completely oxidized by chlorine, which leads to chlorine depletion. The stoichiometric ratio for the complete oxidation of glycine was 3:1, larger than that for complete oxidation of ammonia (2:1). For the different stoichiometric ratio in reaction of oxidation of ammonia and glycine, the sum of ammonia and glycine cannot be used as a chlorine dosage control parameter. The chlorine control method involving ammonia and glycine for chlorine and chloramination process is established.
Показать больше [+] Меньше [-]