Уточнить поиск
Результаты 1-10 из 134
Evaluation of Heavy Metal Pollution of Snow and Groundwater on the Territory of Suburban Community Garden Plots of the Arkhangelsk Agglomeration (Northwest Russia) Полный текст
2022
Yakovlev, Evgeny | Zykova, Elena | Zykov, Sergey | Druzhinina, Anna | Ivanchenko, Nikolay
The article presents the results of a study of heavy metals in snow and groundwater within the industrially developed Arkhangelsk agglomeration, which is the largest among urban formations in the Arctic zone of Russia. This article describes the results of research on the territories of three suburban community garden plots used by residents of the cities of the Arkhangelsk, Severodvinsk and Novodvinsk agglomeration for recreation, growing fruits and vegetables, picking wild berries and mushrooms, and short-term residence. In groundwater samples taken from wells, the average concentrations of heavy metals decrease in the following order: Fe > Mn > Zn > Cr > Ni > Cu > Ti > V > Pb > U > As > Co > Mo > Sb > Cd. A comparison of metal concentrations in groundwater with WHO and SanPiN standards showed that only Fe and Mn exceeded the permissible limits, for the rest of the studied metals, the concentrations were significantly below the permissible limits. The study of heavy metals in the snow showed a similar order of decrease in concentrations to groundwater and total concentrations of soluble metal fractions. This fact indicates the migration of heavy metals into groundwater after the spring snowmelt and the fact the main source of groundwater pollution is the atmospheric channel. According to the values of the total areal pollution of the snow cover with heavy metals, the most polluted are suburban garden plots in the area of the Arkhangelsk city – 216.91 mg/m2. The results of the principal component analysis showed that the main sources of snow cover pollution with heavy metals in the suburban areas of the Arkhangelsk agglomeration were thermal power plants, machine-building and metallurgical plants, a solid waste landfill, and vehicles. The calculation of the heavy metal pollution index for water did not reveal a significant anthropogenic impact. However, the indices assessing the amount of metals (heavy metal evaluation index), toxicity (heavy metal toxicity load), non-carcinogenic risk (hazard index), and carcinogenic risk indicate a high level of heavy metal pollution of the studied waters, as well as the unsuitability of groundwater and melted snow as drinking water. Metals such as Fe, Mn, Ni, Cu, and Pb make the greatest contribution to the quality indices of the studied waters.
Показать больше [+] Меньше [-]New and legacy persistent organic pollutants (POPs) in breeding seabirds from the East Antarctic Полный текст
2022
Lewis, Phoebe J. | Lashko, Anna | Chiaradia, Andre | Allinson, Graeme | Shimeta, Jeff | Emmerson, Louise
Persistent organic pollutants (POPs) are pervasive and a significant threat to the environment worldwide. Yet, reports of POP levels in Antarctic seabirds based on blood are scarce, resulting in significant geographical gaps. Blood concentrations offer a snapshot of contamination within live populations, and have been used widely for Arctic and Northern Hemisphere seabird species but less so in Antarctica. This paper presents levels of legacy POPs (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)) and novel brominated flame retardants (NBFRs) in the blood of five Antarctic seabird species breeding within Prydz Bay, East Antarctica. Legacy PCBs and OCPs were detected in all species sampled, with Adélie penguins showing comparatively high ∑PCB levels (61.1 ± 87.6 ng/g wet weight (ww)) compared to the four species of flying seabirds except the snow petrel (22.5 ± 15.5 ng/g ww), highlighting that legacy POPs are still present within Antarctic wildlife despite decades-long bans. Both PBDEs and NBFRs were detected in trace levels for all species and hexabromobenzene (HBB) was quantified in cape petrels (0.3 ± 0.2 ng/g ww) and snow petrels (0.2 ± 0.1 ng/g ww), comparable to concentrations found in Arctic seabirds. These results fill a significant data gap within the Antarctic region for POPs studies, representing a crucial step forward assessing the fate and impact of legacy POPs contamination in the Antarctic environment.
Показать больше [+] Меньше [-]Pathways for wintertime deposition of anthropogenic light-absorbing particles on the Central Andes cryosphere Полный текст
2021
Lapere, Rémy | Mailler, Sylvain | Menut, Laurent | Huneeus, Nicolás
Ice and snow in the Central Andes contain significant amounts of light-absorbing particles such as black carbon. The consequent accelerated melting of the cryosphere is not only a threat from a climate perspective but also for water resources and snow-dependent species and activities, worsened by the mega-drought affecting the region since the last decade. Given its proximity to the Andes, emissions from the Metropolitan Area of Santiago, Chile, are believed to be among the main contributors to deposition on glaciers. However, no evidence backs such an assertion, especially given the usually subsident and stable conditions in wintertime, when the snowpack is at its maximum extent. Based on high-resolution chemistry-transport modeling with WRF-CHIMERE, the present work shows that, for the month of July 2015, up to 40% of black carbon dry deposition on snow or ice covered areas in the Central Andes downwind from the Metropolitan area can be attributed to emissions from Santiago. Through the analysis of aerosol tracers we determine (i) that the areas of the Metropolitan Area where emissions matter most when it comes to export towards glaciers are located in Eastern Santiago near the foothills of the Andes, (ii) the crucial role of the network of Andean valleys that channels pollutants up to remote locations near glaciers, following gentle slopes. A direct corollary is that severe urban pollution, and deposition of impurities on the Andes, are anti-correlated phenomena. Finally, a two-variable meteorological index is developed that accounts for the dynamics of aerosol export towards the Andes, based on the zonal wind speed over the urban area, and the vertical diffusion coefficient in the valleys close to ice and snow covered terrain. Numerous large urban areas are found along the Andes so that the processes studied here can shed light on similar investigations for other glaciers-dependent Andean regions.
Показать больше [+] Меньше [-]Assessment of heavy metal contamination in the atmospheric deposition during 1950–2016 A.D. from a snow pit at Dome A, East Antarctica Полный текст
2021
Liu, Ke | Hou, Shugui | Wu, Shuangye | Zhang, Wangbin | Zou, Xiang | Yu, Jinhai | Song, Jing | Sun, Xuechun | Huang, Renhui | Pang, Hongxi | Wang, Jiajia
Antarctic trace element records could provide important insights into the impact of human activities on the environment over the past few centuries. In this study, we investigated the atmospheric concentrations of 14 representative heavy metals (Al, As, Cd, Co, Cu, Fe, K, Mg, Mn, Pb, Sb, Sr, Tl and V) from 174 samples collected in a 4-m snow pit at Dome Argus (Dome A) on the East Antarctic Plateau, covering the period from 1950 to 2016 A.D. We found great variability in the annual concentration of all metals. The crustal enrichment factors suggest that the concentrations of some heavy metals (Cd, Sb, Cu, As and Pb) were likely influenced by anthropogenic activities in recent decades. An analysis of source regions suggests that heavy metal pollution at Dome A was largely caused by human activities in Australia and South America (e.g. mining production, leaded gasoline). Based on the relationship between the trace elements fluxes and sea ice concentration (SIC), sea surface temperature (SST) and annual mean air temperature at 2 m above the ground (T₂ₘ), our analysis shows that deposition and transport of atmospheric aerosol at Dome A were influenced by circum-Antarctic atmospheric circulations.
Показать больше [+] Меньше [-]Advances in Ultra-Trace Analytical Capability for Micro/Nanoplastics and Water-Soluble Polymers in the Environment: Fresh Falling Urban Snow Полный текст
2021
Wang, Zi | Saadé, Nadim K. | Ariya, Parisa A.
Discarded micro/nano-plastic inputs into the environment are emerging global concerns. Yet the quantification of micro/nanoplastics in complex environmental matrices is still a major challenge, notably for soluble ones. We herein develop in-laboratory built nanostructures (zinc oxide, titanium oxide and cobalt) coupled to mass spectrometry techniques, for picogram quantification of micro/nanoplastics in water and snow matrices, without sample pre-treatment. In parallel, an ultra-trace quantification method for micro/nanoplastics based on nanostructured laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOF-MS) is developed. The detection limit is ∼5 pg for ambient snow. Soluble polyethylene glycol and insoluble polyethylene fragments were observed and quantified in fresh falling snow in Montreal, Canada. Complementary physicochemical studies of the snow matrices and reference plastics using laser-based particle sizers, inductively coupled plasma tandem mass spectrometry, and high-resolution scanning/transmission electron microscopy, produced consistent results with NALDI, and further provided information on morphology and composition of the micro/nano-plastic particles. This work is promising as it demonstrates that a wide range of recyclable nanostructures, in-laboratory built or commercial, can provide ultra-trace capability for quantification for both soluble polymers and insoluble plastics in air, water and soil. It may thereby produce key missing information to determine the fate of micro/nanoplastics in the environment, and their impacts on human health.
Показать больше [+] Меньше [-]Nanoplastics transport to the remote, high-altitude Alps Полный текст
2021
Materić, Dušan | Ludewig, Elke | Brunner, Dominik | Rockmann, Thomas | Holzinger, Rupert
Plastic materials are increasingly produced worldwide with a total estimated production of >8300 million tonnes to date, of which 60% was discarded. In the environment, plastics fragment into smaller particles, e.g. microplastics (size < 5 mm), and further weathering leads to the formation of functionally different contaminants – nanoplastics (size <1 μm). Nanoplastics are believed to have entirely different physical (e.g. transport), chemical (e.g. functional groups at the surface) and biological (passing the cell membrane, toxicity) properties compared to the micro- and macroplastics, yet, their measurement in the environmental samples is seldom available. Here, we present measurements of nanoplastics mass concentration and calculated the deposition at the pristine high-altitude Alpine Sonnblick observatory (3106 MASL), during the 1.5 month campaigh in late winter 2017. The average nanoplastics concentration was 46.5 ng/mL of melted surface snow. The main polymer types of nanoplastics observed for this site were polypropylene (PP) and polyethylene terephthalate (PET). We measured significantly higher concentrations in the dry sampling periods for PET (p < 0.002) but not for PP, which indicates that dry deposition may be the preferential pathway for PET leading to a gradual accumulation on the snow surfaces during dry periods. Air transport modelling indicates regional and long-range transport of nanoplastics, originating preferentially from European urban areas. The mean deposition rate was 42 (+32/-25) kg km⁻² year⁻¹. Thus more than 2 × 10¹¹ nanoplastics particles are deposited per square meter of surface snow each week of the observed period, even at this remote location, which raises significant toxicological concerns.
Показать больше [+] Меньше [-]Molecular characterization and spatial distribution of dicarboxylic acids and related compounds in fresh snow in China Полный текст
2021
Zhang, Zhimin | Zhao, Wanyu | Hu, Wei | Deng, Junjun | Ren, Lujie | Wu, Libin | Chen, Shuang | Meng, Jingjing | Pavuluri, Chandra Mouli | Sun, Yele | Wang, Zifa | Kawamura, Kimitaka | Fu, Pingqing
Low molecular weight organic compounds are ubiquitous in the atmosphere. However, knowledge on their concentrations and molecular distribution in fresh snow remains limited. Here, twelve fresh snow samples collected at eight sites in China were investigated for dicarboxylic acids and related compounds (DCRCs) including oxocarboxylic acids and α-dicarbonyls. Dissolved organic carbon (DOC) concentrations in the snow samples ranged from 0.99 to 14.6 mg C L⁻¹. Concentrations of total dicarboxylic acids were from 225 to 1970 μg L⁻¹ (av. 650 μg L⁻¹), while oxoacids (28.3–173, av. 68.1 μg L⁻¹) and dicarbonyls (12.6–69.2, av. 31.3 μg L⁻¹) were less abundant, accounting for 4.6–8.5% (6.2%), 0.45–1.4% (0.73%), and 0.12–0.88% (0.46%) of DOC, respectively. Molecular patterns of dicarboxylic acids are characterized by a predominance of oxalic acid (C₂) (95.0–1030, av. 310 μg L⁻¹), followed by phthalic (Ph) (9.69–244, av. 69.9 μg L⁻¹) or succinic (C₄) (23.8–163, av. 63.7 μg L⁻¹) acid. Higher concentrations of Ph in snow from Beijing and Tianjin than other urban and rural regions suggest significant emissions from vehicular exhausts and other fossil fuel combustion sources in megacities. C₂ constituted 40–54% of total diacids, corresponding to 1.5–2.6% of snow DOC. The total measured DCRCs represent 5.5–10% of snow DOC, which suggests that there are large amounts of unknown organics requiring further investigations. The spatial distributions of diacids exhibited higher loadings in megacities than rural and island sites. Molecular distributions of diacids indicated that the photochemical modification was restrained under the weak solar radiation during the snow events, while anthropogenic primary sources had a more significant influence in megacities than rural areas and islands.
Показать больше [+] Меньше [-]Diverse effects of accelerating climate change on chemical recovery of alpine lakes from acidic deposition in soil-rich versus scree-rich catchments Полный текст
2021
Kopáček, Jiří | Kaňa, Jiří | Porcal, Petr | Stuchlík, Evžen
The current recovery of mountain lakes from atmospheric acidification is increasingly affected (both accelerated and/or delayed) by climate change. We evaluated long-term trends in the ionic composition of 30 lakes situated in the alpine zone of the Tatra Mountains, and compared the rates of their recovery with model (MAGIC) simulations done 20 years ago for the 2003–2020 period. The observed recovery was faster than the model forecast, due to greater reductions in acidic deposition than projected. Trends in water composition were further modified by climate change. Rising temperatures increased the length of the growing season and retention of inorganic N and SO₄²⁻ more in soil-rich compared with soil-poor catchments. In contrast, elevated precipitation and an increase in rainfall intensity reduced water residence time in soils, and consequently reduced N retention, especially in soil-poor catchments. It is likely that increases in rainfall intensity and annual number of days without snow, along with air temperatures fluctuating around the freezing point elevated the physical erosion of rocks, especially in high-elevation, steep, and scree-rich areas where rocks are not thermally insulated and stabilized by soils. Weathering of exposed accessory calcite in the eroded granodiorite bedrock was a source of Ca²⁺ and HCO₃⁻, while S-bearing minerals likely contributed to lake water SO₄²⁻ and partly mitigated its deposition-related decrease in scree-rich catchments. The extent of climate effects on changes in the water composition of alpine lakes recovering from acidic deposition thus depended on elevation and cover of soil and scree in catchments. Our results highlight the need for incorporating dominant climate-related process into existing process-based models to increase their reliability in predicting the future development of lake water composition.
Показать больше [+] Меньше [-]Atmospheric pollution revealed by trace elements in recent snow from the central to the northern Tibetan Plateau Полный текст
2020
Li, Yuefang | Huang, Ju | Li, Zhen | Zheng, Kui
In order to determine the current levels, spatial distribution patterns, and potential pollution of trace elements (TEs) in the atmosphere of the Tibetan Plateau (TP), snow pit samples were collected in May 2016 from five TP glaciers: Qiyi (QY), Hariqin (HRQ), Meikuang (MK), Yuzhufeng (YZF), and Xiaodongkemadi (XDKMD). Concentrations of 13 TEs (Al, Ba, Cd, Co, Cr, Cu, Fe, Li, Pb, Sb, Sr, U, and Zn) in the snow were measured. The spatial distribution patterns and depth profiles of TEs from the studies sites revealed that the influence of dust on TEs was more significant on the MK and YZF glaciers than on the QY, HRQ, and XDKMD glaciers. The spatial distributions of TE EFFₑ values differed from their concentrations, however. The enrichment factor (EF) values and concentrations of some TEs in the YZF, QY, and XDKMD glaciers revealed that the pollution levels of these elements were significantly lower than those found in previous research. Examination based on EFs, principal component analysis, as well as the calculated non-dust contributions of TEs, revealed that dust was the principal source for most TEs in all five glaciers, while biomass burning was another potential natural source for TEs in some glaciers, such as QY. In contrast, Cd, Ba, Sr, Cu, Pb, Zn, and Sb were occasionally affected by anthropogenic sources such as road traffic emissions, fossil fuel combustion, and mining and smelting of nonferrous metals in and beyond the TP. Air mass backward trajectories revealed that potential pollutants were transported not only from local sources but also from Xinjiang Province in northwestern China, as well as South Asia, Central Asia, the Middle East, and Europe.
Показать больше [+] Меньше [-]Athabasca oil sands region snow contains efficient micron and nano-sized ice nucleating particles Полный текст
2019
The Athabasca Oil Sands Region (AOSR) in Alberta, Canada, is an important source of atmospheric pollutants, such as aerosols, that have repercussions on both the climate and human health. We show that the mean freezing temperature of snow-borne particles from AOSR was elevated (−7.1 ± 1.8 °C), higher than mineral dust which freezes at ∼ −15 °C and is recognized as one of the most relevant ice nuclei globally. Ice nucleation of nanosized snow samples indicated an elevated freezing ability (−11.6 ± 2.0 °C), which was statistically much higher than snow-borne particles from downtown Montreal. AOSR snow had a higher concentration (∼2 orders of magnitude) of >100 nm particles than Montreal. Triple quadrupole ICP-(QQQ)-MS/MS analysis of AOSR and Montreal snow demonstrated that most concentrations of metals, including those identified as emerging nanoparticulate contaminants, were much more elevated in AOSR in contrast to Montreal: 34.1, 34.1, 16.6, 5.8, 0.3, 0.1, and 9.4 mg/m³ for Cr, Ni, Cu, As, Se, Cd, and Pb respectively, in AOSR and 1.3, 0.3, 2.0, <0.03, 0.1, 0.03, and 1.2 mg/m³ in Montreal snow. High-resolution Scanning Transmission Electron Microscopy/Energy-dispersive X-ray Spectroscopy (STEM-EDS) imaging provided evidence for various anthropogenic nano-materials, including carbon nanotubes resembling structures, in AOSR snow up to 7–25 km away from major oil sands upgrading facilities. In summary, particles characterized as coming from oil sands are more efficient at ice nucleation. We discuss the potential impacts of AOSR emissions on atmospheric and microphysical processes (ice nucleation and precipitation) both locally and regionally.
Показать больше [+] Меньше [-]