Уточнить поиск
Результаты 1-10 из 24
Microplastics in plant-soil ecosystems: A meta-analysis
2022
Zhang, Yanyan | Cai, Chen | Gu, Yunfu | Shi, Yuanshuai | Gao, Xuesong
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO₂ flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N₂O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
Показать больше [+] Меньше [-]Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment
2021
Lian, Mingming | Wang, Longfei | Feng, Qiaoqiao | Niu, Liyong | Zhao, Zongsheng | Wang, Pengtao | Song, Chunpeng | Li, Xiaohong | Zhang, Zhijun
Heavy metal contamination has been threatening the health of human beings. To decrease the bio-toxicity of heavy metals, a thiol-functionalized nano-silica (SiO₂-SH) was adopted to remediate the soil contaminated by lead (Pb), cadmium (Cd) and copper (Cu). The remediation effect of SiO₂-SH on contaminated soils was investigated by the uptake of the heavy metals into lettuce and pakchoi in pot experiment. The bio-toxicity of the SiO₂-SH was evaluated, and its immobilization mechanisms were proposed by the fraction distribution of Cd, Pb and Cu. It was found that the SiO₂-SH can significantly reduce the uptake of Cd, Pb, Cu into pakchoi by 92.02%, 68.03%, 76.34% and into lettuce by 89.81%, 43.41%, 5.76%, respectively. The chemical species analyses of Cd, Pb, Cu indicate SiO₂-SH can transform the heavy metal in acid soluble states into reducible fraction and oxidizable fraction, thereby inhibiting the extraction of heavy metals into soil solution. The concentrations of microbial biomass carbon, organic matter, and cation exchange capacity of the soil increased while the soil bulk density decreased after remediation. Those changes demonstrate that SiO₂-SH not only has no bio-toxic impact on the soil environment but also improves the soil environment, which proves the prepared SiO₂-SH is environmental-friendly. The SiO₂-SH could be a promising amendment for heavy metal contaminated soils.
Показать больше [+] Меньше [-]Sensitivity analysis for models of greenhouse gas emissions at farm level. Case study of N₂O emissions simulated by the CERES-EGC model
2011
Drouet, J.-L. | Capian, N. | Fiorelli, J.-L. | Blanfort, V. | Capitaine, M. | Duretz, S. | Gabrielle, B. | Martin, R. | Lardy, R. | Cellier, P. | Soussana, J.-F.
Modelling complex systems such as farms often requires quantification of a large number of input factors. Sensitivity analyses are useful to reduce the number of input factors that are required to be measured or estimated accurately. Three methods of sensitivity analysis (the Morris method, the rank regression and correlation method and the Extended Fourier Amplitude Sensitivity Test method) were compared in the case of the CERES-EGC model applied to crops of a dairy farm. The qualitative Morris method provided a screening of the input factors. The two other quantitative methods were used to investigate more thoroughly the effects of input factors on output variables. Despite differences in terms of concepts and assumptions, the three methods provided similar results. Among the 44 factors under study, N₂O emissions were mainly sensitive to the fraction of N₂O emitted during denitrification, the maximum rate of nitrification, the soil bulk density and the cropland area.
Показать больше [+] Меньше [-]Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis
2022
Qiu, Yifei | Zhou, Shenglu | Zhang, Chuchu | Su, San | Qin, Wendong
The soil environment serves as an assembling area for microplastics, and is an important secondary source of microplastics in other environmental media. Recently, soil microplastics have been extensively studied; however, high variability is observed among the research results owing to different soil properties, and the complexity of soil microplastic composition. The present study amassed the findings of 2886 experimental groups, across 38 studies from 2016 to 2022, and used meta-analysis to quantitatively analyze the differences in the effects of microplastic exposure on soil physicochemical properties and biota. The results showed that among the existing soil microplastic research, agricultural soils maintained a higher environmental exposure distribution than other environments. Microplastic fibers and fragments were the predominant shapes, indicating that the extensive use of agricultural films are the primary influencing factor of soil microplastic pollution at present. The results of the meta-analysis found that microplastic exposure had a significant negative effect on soil bulk density (lnRR = −0.04) and aggregate stability (lnRR = −0.085), indicating that microplastics may damage the integrity of soil structure or damage the soil surface. The significant changes in plant root biomass and soil phosphatase further signified the potential impact of microplastics on soil nutrient and geochemical element cycling. We further constructed species sensitivity distribution curves, revealing that invertebrates had a higher species sensitivity to microplastics, as they can pass through the gut wall of soil nematodes, causing oxidative stress and affecting gene expression. In general, soil is an interconnected complex, and microplastic exposure can directly or indirectly interact with environmental chemical processes in the soil environment, potentially harming the soil ecosystem; however, current research remains insufficient with respect to breadth and depth in terms of the comprehensive “source-sink” mechanism of soil microplastics, the hazard of exposure, and the overall toxic effects.
Показать больше [+] Меньше [-]Loss of particulate contaminants from plant canopies under wet and dry conditions
1996
Kinnersley, R.P. | Shaw, G. | Bell, J.N.B. | Minski, M.J. | Goddard, A.J.H. (Centre for Analytical Research in the Environment, Imperial College at Silwood Park, Ascot, Berkshire SL5 7TE (United Kingdom))
Microplastic pollution on the soil and its consequences on the nitrogen cycle: a review
2022
Riveros, Gustavo | Urrutia, Homero | Araya, Juan | Zagal, Erick | Schoebitz, Mauricio
Microplastics (MPs) correspond to plastics between 0.1 μm and 5 mm in diameter, and these can be intentionally manufactured to be microscopic or generated from the fragmentation of larger plastics. Currently, MP contamination is a complicated subject due to its accumulation in the environment. They are a novel surface and a source of nutrients in soils because MPs can serve as a substrate for the colonization of microorganisms. Its presence in soil triggers physical (stability of aggregates, soil bulk density, and water dynamics), chemical (nutrients availability, organic matter, and pH), and biological changes (microbial activity and soil fauna). All these changes alter organic matter degradation and biogeochemical cycles such as the nitrogen (N) cycle, which is a key predictor of ecological stability and management in the terrestrial ecosystem. This review aims to explore how MPs affect the N cycle in the soil, the techniques to detect it in soil, and their effects on the physicochemical and biological parameters, emphasizing the impact on the main bacterial groups, genes, and enzymes associated with the different stages of the N cycle.
Показать больше [+] Меньше [-]Effects of meteorology and soil on the herb species diversity in plantations in a reclamation area of coal mine after 6 years
2020
Guo, Chunyan | Zhang, Feng | Wang, Xiang | Lu, Ning
The ecological restoration of mining areas has always been emphasized in ecological research. This study has investigated herb species diversity of plantations in a reclamation area of the Antaibao opencast coal mine in China after 6 years, aiming to investigate the changes over time and spontaneous succession patterns. One hundred fifty-six species of naturally colonizing herb belonging to 26 families and 86 genera in the six plantations were chosen. Most of 24 herb-dominant species belong to Gramineae, Compositae, and Papilionaceae. Species diversity, meteorology, and soil were recorded. Over time, although the dominant degree of Gramineous has decreased and the degree of Labiatae and Polygonaceae has increased, it still indicated that Gramineae, Compositae, and Papilionaceae occupied an important position in the herb community and played an important role in natural vegetation recovery in reclamation area of the Antaibao opencast coal mine. The diversity of herb species showed significant differences between different plots and years. Correlation analysis indicates that the most important factors for herb species diversity are soil bulk density, average winter temperature, and the mean autumn rainfall.
Показать больше [+] Меньше [-]Inhibiting effects of flue gas desulfurization gypsum on soil phosphorus loss in Chongming Dongtan, southeastern China
2019
Kun, He | Xiaoping, Li
To explore the possibility of using flue gas desulfurization gypsum (FGDG) for inhibiting phosphorus (P) loss due to agricultural runoff, a 3-year study was performed in the farmlands of Chongming Dongtan between 2012 and 2015. Five different quantities of FGDG were used to treat the soil, and the effects of different treatments on the characteristics of soil P and crop growth were investigated. The results showed that 2 years after application of FGDG, the soil density at a depth of 0–10 cm decreased by 4.35–7.97%, the porosity increased by 1.77–11.0%, and the topsoil permeability increased by 0.87–3.81 times. Although the use of FGDG did not change the total P concentration in the soil, it decreased the concentration of sodium bicarbonate extractable P in the soil. Compared to the control, the average extractable P concentration at depths of 0–10 cm, 10–20 cm, and 20–30 cm decreased by 22.0–46.1%, 26.9–40.5%, and 22.8–34.8%, respectively. The inorganic P in the soil increased as the amount of FGDG increased, and the increase was mainly as Ca–P in the forms Ca₂–P and Ca₁₀–P. The decrease in bicarbonate extractable P and increase in inorganic P in the soil did not affect the growth of the crops, and the biomass and output of the crops increased compared to the control. Therefore, FGDG can enhance soil P immobilization, thus reducing soluble P runoff from farm fields, and improving water quality in receiving lakes and rivers while maintaining P nutrition to the crops.
Показать больше [+] Меньше [-]Soil Microbial Metabolic Activity and Community Structure in Drip-Irrigated Calcareous Soil as Affected by Irrigation Water Salinity
2019
Guo, Huijuan | Hu, Zhiqiang | Zhang, Huimin | Hou, Zhenan | Min, Wei
Saline water irrigation can dramatically change the soil environment and thereby influence soil microbial processes. The objective of this field experiment was to use Biolog and high-throughput sequencing methods to evaluate the metabolic activity and community structure of soil microorganisms after 9 years of saline water irrigation. The results showed that brackish and saline water irrigation significantly increased soil bulk density and salinity, but significantly decreased soil pH, TN, SOM, MBC, and metabolic activity. The Biolog tests of sole-carbon-source utilization indicated that the brackish and saline water treatments significantly reduced the utilization of four carbohydrate sources (D-cellobiose, β-methyl-d-glucoside, D-mannitol, and glucose-1-phosphate), two amino acid sources (L-asparagine and glycyl-L-glutamic acid), two carboxylic acid sources (D-galacturonic acid and D-malic acid), and two polymer sources (Tween 80 and glycogen). Brackish and saline water increased soil bacterial richness (ACE and Chao 1 indices) but had no effect on which bacterial phyla were present. Brackish and saline irrigation water significantly increased the relative abundance of four dominant bacterial phyla (Gemmatimonadetes, Actinobacteria and Chloroflexi, Saccharibacteria). In contrast, the relative abundance of five dominant phyla (Proteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia) was reduced by brackish and saline irrigation water. Our study suggests that soil bacterial community will form significant differences species under different irrigation water salinity, which can adapt to saline stress by adjusting the species composition. The results of this study increase understanding about the potential effects of saline water irrigation on soil biological processes.
Показать больше [+] Меньше [-]Impacts of biosolids application on soil quality under alternate year no-till corn–soybean rotation
2015
Yücel, Derya | Yucel, Celal | Aksakal, Ekrem L. | Barik, Kenan | Khosa, Maninder | ʼAzīz, ʻIrfān | Islam, Khandakar Rafiq
Biosolids are a source of recycled organic matter and nutrients. To evaluate the impact of biosolids application (1984–2008) on soil quality, composite soils (Genesee silt loam, fine loamy, mixed, nonacid, and mesic typic udifluvent) were randomly sampled at geo-referenced sites from 0 (control), 2, 5, and 25 years of lime-stabilized anaerobically digested biosolid-applied fields. Results showed that microbial biomass C (Cₘᵢc), N (Nₘᵢc), and P (Pₘᵢc) contents were significantly higher at both depths of the 5 and 25 years of biosolid-applied fields compared to the control. Biosolid application significantly enlarged the biologically labile C (Cₘᵢc over total organic C, Cₘᵢc:Cₒᵣg) and N (Nₘᵢc over total N, Nₘᵢc:TN) pools with an associated decrease in metabolic C loss (20–53 %) by specific maintenance respiration (qCO₂) relative to the control. The Cₒᵣg, active (AC) and soluble C (SC), TN and reactive N (RN), and reactive P (RP) contents were significantly higher in the long-term biosolid-applied fields than in the control. However, there was an indication of leaching of SC, RN, and RP between depths. Years of biosolid application significantly increased soil moisture content (θ ᵥ at −0.03 MPa) by 20–40 %, macroaggregate stability (MaA) by 2–44 %, and mean weight diameter (MWD) of aggregates by 7–51 %, respectively. Consequently, there was a decrease in soil bulk density (ρ b) and microaggregate stability (MiA) at both depths. Results confirmed that biosolids application at rates recommended is a viable management option to improve soil quality for crop production. However, long-term and repeated biosolid applications above the recommended agronomic N and P rates may be responsible for accumulation and consequent leaching and runoff of SC, RN, and RP to cause groundwater and surface water pollution with environmental consequences.
Показать больше [+] Меньше [-]