Уточнить поиск
Результаты 1-10 из 229
Extractive Treatment of Arsenic Contaminated Clay Soils (Vermiculite)
2022
Abbaslou, Hanie | Ghofran Makshuf, Saeedeh | Bakhtiari, Somayeh | Ghanizadeh, Ali Reza | Shahrashoub, Meysam
In this research, the capability of vermiculite in arsenic extraction, associated with characterizing its main properties was evaluated. To address this purpose, vermiculite was artificially contaminated with arsenic at 7 and 28-day intervals. Then, arsenic was extracted from contaminated soils by different extractants. Various physical and mechanical tests were performed to investigate the effect of arsenic as an anionic contaminant on the properties of the vermiculite, as well as to evaluate how the properties of the contaminated soil were altered by the extraction process. The carbonate bonding phase was probably mainly responsible for the adsorption and fixation of arsenic with more than 50% portion among measured fractions at different curing times. Based on the vermiculite condition, hydrochloric acid was the best extractant for removing arsenic in all studied samples (around 3 -18 % more than other extractants). The clay soil demonstrated few changes due to arsenic contamination and modification. In general, the most promising characteristics of vermiculite as clay liner are its stability after contamination due to high CEC and SSA; however, its workability and strength (UCS between 110 to 220 kPa at different soil conditions) is a challenge and must be improved by adding coarser fractions like silt particles. In general, the results of this study regarding the effects of arsenic contamination and extraction onto vermiculite’s physical properties can provide appropriate information for researchers and geo-environmental engineers.
Показать больше [+] Меньше [-]Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001-2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7-8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1-2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
Показать больше [+] Меньше [-]Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses
2020
Li, Zhangtao | Wang, Lu | Wu, Jizi | Xu, Yan | Wang, Fan | Tang, Xianjin | Xu, Jianming | Ok, Yong Sik | Meng, Jun | Liu, Xingmei
Zeolite-supported nanoscale zero-valent iron (Z-NZVI) has great potential for metal(loid) removal, but its encapsulation mechanisms and ecological risks in real soil systems are not completely clear. We conducted long-term incubation experiments to gain new insights into the interactions between metal(loid)s (Cd, Pb, As) and Z-NZVI in naturally contaminated farmland soils, as well as the alteration of indigenous bacterial communities during soil remediation. With the pH-adjusting and adsorption capacities, 30 g kg⁻¹ Z-NZVI amendment significantly decreased the available metal(loid) concentrations by 10.2–96.8% and transformed them into strongly-bound fractions in acidic and alkaline soils after 180 d. An innovative magnetic separation of Z-NZVI from soils followed by XRD and XPS characterizations revealed that B-type ternary complexation, heterogeneous coprecipitation, and/or concurrent redox reactions of metal(loid)s, especially the formation of Cd₃(AsO₄)₂, PbFe₂(AsO₄)₂(OH)₂, and As⁰, occurred only under specific soil conditions. Sequencing of 16S rDNA using Illumina MiSeq platform indicated that temporary shifts in iron-resistant/sensitive, pH-sensitive, denitrifying, and metal-resistant bacteria after Z-NZVI addition were ultimately eliminated because soil characteristics drove the re-establishment of indigenous bacterial community. Meanwhile, Z-NZVI recovered the basic activities of bacterial DNA replication and denitrification functions in soils. These results confirm that Z-NZVI is promising for the long-term remediation of metal(loid)s contaminated farmland soil without significant ecotoxicity.
Показать больше [+] Меньше [-]Predicting the modifying effect of soils on arsenic phytotoxicity and phytoaccumulation using soil properties or soil extraction methods
2020
Zhang, Xiaoqing | Dayton, Elizabeth A. | Basta, Nicholas T.
Soils have the ability to modify contaminant bioavailability and toxicity. Prediction the modifying effect of soil on arsenic phytoaccumulation and phytoavailability using either soil property data or soil chemical extraction data in risk assessment of contaminated soil is highly desirable. In this study, plant bioassays important to ecological receptors, were conducted with 20 soils with a wide range in chemical and physical soil properties to determine the relationships between As measured by soil chemical extraction (soil pore water, Bray-1, sodium phosphate solution, hydroxylamine hydrochloride, and acid ammonium oxalate) or soil physico/chemical properties on arsenic phytotoxicity and phytoaccumulation. Soil pore water As and Bray-1 extracted As were significantly (P < 0.01) correlated with lettuce tissue As and those extractants and sodium phosphate were correlated with ryegrass tissue As. Hydroxylamine and acid ammonium oxalate extractions did not correlate with plant bioassay endpoints. Simple regression results showed that lettuce tissue relative dry matter growth (RDMG) was inversely related to tissue As concentration (r² = 0.85, P < 0.01), with no significant relationship for ryegrass. Soil clay exhibited strong adsorption for As and significantly reduce tissue As for lettuce and ryegrass. In addition to clay content, reactive aluminum oxide (AlOx), reactive Fe oxide (FeOx) and eCEC was inversely related to ryegrass tissue As. Multiple regression equation was strongly predictive (r² = 0.83) for ryegrass tissue As (log transformed) using soil AlOx, organic matter, pH, and eCEC as variables. Soil properties can greatly reduce contaminant phytoavailability, plant exposure and risk, which should be considered when assessing contaminant exposure and site-specific risk in As-contaminated soils.
Показать больше [+] Меньше [-]Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) in tropical soils
2020
Oliver, Danielle P. | Li, Yasong | Orr, Ryan | Nelson, Paul | Barnes, Mary | McLaughlin, Michael (Michael J.) | Kookana, Rai S.
The sorption behaviour of three perfluoroalkyl substances (PFASs), namely perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonic acid (PFHxS), was determined on 28 tropical soils. Tropical soils are often highly weathered, richer in sesquioxides than temperate soils and may contain variable charge minerals. There are little data on sorption of PFASs in tropical soils. The highest Kd values were found for PFOS with mean values ranging from 0 to 31.6 L/kg. The Kd values for PFOA and PFHxS ranged from 0 to 4.9 L/kg and from 0 to 5.6 L/kg, respectively. While these values are in the range of literature sorption data, the average Kd values for PFOS and PFOA from the literature were 3.7 times and 3.6 times higher, respectively, than those measured in this study. Stepwise regression analysis did explain some of the variance, but with different explanatory variables for the different PFASs. The main soil properties explaining sorption for PFOS and PFOA were oxalate-extractable Al and pH, and for PFHxS was pH.
Показать больше [+] Меньше [-]Multigenerational exposure to TiO2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling
2020
Hu, Zhao | Hou, Jie | Zhu, Ya | Lin, Daohui
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO₂ NPs (nTiO₂) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO₂, and the toxicities of three nTiO₂ forms were largely comparable. The nTiO₂ exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO₂ exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO₂, and add new knowledge on the long-term impact of soil nTiO₂ contamination.
Показать больше [+] Меньше [-]Identifying the sources and spatial patterns of potentially toxic trace elements (PTEs) in Shanghai suburb soils using global and local regression models
2020
Liu, Yue | Fei, Xufeng | Zhang, Zhonghao | Li, Yansheng | Tang, Junzhe | Xiao, Rui
Destructive development of suburban areas in some metropolises has exposed suburban soils to high risk of potentially toxic trace elements (PTEs) enrichment, which also threatens human and ecosystem health. This study investigated the pollution status, sources and spatial patterns of four PTEs (Pb, Cd, Cr and As) in 1805 soil samples collected from the suburbs of Shanghai in 2015. Nineteen potential sources, including: 6 soil property factors, 10 proximity factors and 3 topography factors, were selected to help explain the PTEs aggregation using logistic regression models from global and local perspectives. The statistical results of PTEs concentration revealed that Cd showed the highest pollution risk in local soils, which was followed by As. Soil property was the primary factor affecting the PTEs (except Cr) enrichment, both identified by global models and local models. The local model particularly emphasized the significant correlation between soil property and PTEs in most parts of the outer suburbs and southeastern inner suburbs. Some proximity factors such as distance to district center and water were negatively correlated with Cd pollution and some topography factors such as elevation and slope were closely related to As pollution. It is worth noting that in the coastal areas, especially Chongming Island, there were obvious PTEs depositions in the soil near the estuary. This study helps to identify the sources of anthropogenic contamination and geogenic enrichment of the four PTEs and their spatial patterns, playing an essential role in formulating regional environmental policies for coastal cities.
Показать больше [+] Меньше [-]Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils
2020
Li, Jinyang | Chen, Qinglin | Li, Helian | Li, Shiwei | Liu, Yinghao | Yang, Liyuan | Han, Xuemei
The human pathogenic bacteria (HPB) in animal feces may disseminate to agricultural soils with their land application as organic fertilizer. However, the knowledge about the impacts of different sources and rates of animal manures on the temporal changes of soil HPB remains limited, which hamper our ability to estimate the potential risks of their land application. Here, we constructed an HPB database including 565 bacterial strains. By blasting the 16 S rRNA gene sequences against the database we explored the occurrence and fate of HPB in soil microcosms treated with two rates of swine, poultry or cattle manures. A total of 30 HPB were detected in all of manure and soil samples. Poultry manure at the high level obviously improved the abundance of soil HPB. The application of swine manure could introduce concomitant HPB into the soils. Of which, Pseudomonas syringae pv. syringae B728a and Escherichia coli APEC O78 may deserve more attention because of their survival for a few days in manured soils and being possible hosts of diverse antibiotic resistance genes (ARGs) as revealed by co-occurrence pattern. Bayesian source tracking analysis showed that the HPB derived from swine manure had a higher contribution to soil pathogenic communities than those from poultry or cattle manures in early days of incubation. Mantel test together with variation partitioning analysis suggested that bacterial community and soil physicochemical properties were the dominant factors determining the profile of HPB and contributed 64.7% of the total variations. Overall, our results provided experimental evidence that application of animal manures could facilitate the potential dissemination of HPB in soil environment, which should arouse sufficient attention in agriculture practice and management to avoid the threat to human health.
Показать больше [+] Меньше [-]Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties
2019
Cao, Xuerui | Wang, Xiaozi | Tong, Wenbin | Gurajala, Hanumanth Kumar | Lu, Min | Hamid, Yasir | Feng, Ying | He, Zhenli | Yang, Xiaoe
Heavy metals contamination in agricultural soil has become a worldwide problem, and soil characteristics modulate metal availability in soils. Four field experiments were conducted simultaneously to evaluate concentration and distribution of cadmium (Cd) and lead (Pb) in 39 oilseed rape cultivars at four agricultural locations with different contamination levels of Cd and Pb, as well as the influence of soil characteristics together with soil total and bioavailable Cd and Pb concentration on metal transfer from soil to oilseed rape. Shoot concentrations of Cd and Pb in oilseed rape cultivars ranged from 0.09 to 3.18 and from 0.01 to 10.5 mg kg⁻¹ across four sites. For most cultivars, Cd concentration in root or shoot were higher than pod and lowest in seed, while the highest Pb concentration was observed in root followed by shoot and seed. Stepwise multiple linear regression analysis allows for a better estimation of Cd and Pb concentration in oilseed rape while taking soil properties into consideration. The results demonstrated that Cd and Pb concentration in oilseed rape were correlated with soil organic matter (OM), cation exchange capacity (CEC), available phosphorus (AP), available potassium (AK), sand, soil total and available Cd and Pb concentration, and R² varied from 0.993 to 0.999 (P < 0.05). The Cd and Pb levels found in oilseed rape indicated its phytoextraction potential for Cd and Pb co-contaminated agricultural soils in winter without stopping agricultural activities.
Показать больше [+] Меньше [-]Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: Efficacy and effects on soil quality
2019
Montiel-Rozas, María del Mar | Hurtado-Navarro, María | Díez-Rojo, Miguel Ángel | Pascual, José A. (José Antonio) | Ros, Margarita
The control of agricultural pests is key to maintain economically viable crops. Increasing environmental awareness, however, is leading to more restrictive European policies regulating the use of certain pesticides due to their impact on human health and the soil system. Given this context, we evaluated the efficacy of three alternatives to the soil fumigant 1,3-dichloropropene (1,3-D), which is currently banned in Europe: two non-fumigant nematicides [oxamyl (OX) and fenamiphos (FEN)] and the soil fumigant dimethyl disulfide (DMDS). We analysed the efficiency of these pesticides against root-knot nematodes and soil fungal pathogens (determined by qPCR) as well as the soil biological quality after treatments application (estimated by enzyme activities). Among treatments, 1,3-D and DMDS significantly reduced nematode populations. FEN was more effective in sandy soil, while OX had no effect in any soil. OX and FEN had no effect on fungal pathogens, whereas DMDS reduced the abundance of Rhizoctonia solani and Fusarium solani at the root level in clay-loam soil. Soil quality decreased after treatment application but then recovered throughout the experiment, indicating the possible dissipation of the pesticides. Our findings support DMDS as a potential sustainable alternative for controlling root-knot nematodes and fungal pathogens due to its effectiveness in both studied soils, although its negative impact on soil biological quality in sandier soils must be taken into account.Main finding of the work. DMDS is a reliable alternative to 1,3-D for controlling agricultural pest but its inhibitory effect on soil enzyme activities varied according to the soil characteristics.
Показать больше [+] Меньше [-]