Уточнить поиск
Результаты 1-10 из 164
Use of a chemical equilibrium model to understand soil chemical processes that influence soil solution and surface water alkalinity.
1988
David M.B. | Reuss J.O. | Walthall P.M.
Soil Solution Nitrogen and Cations Influenced by (NH4)2SO4 Deposition in a Coniferous Forest
1997
Carnol, Monique | Ineson, Phil | Dickinson, A. L.
peer reviewed | The effects of chronically enhanced (NH(4))(2)SO(4) deposition on ion concentrations in soil solution and ionic fluxes were investigated in a Picea abies plot at Grizedale forest, NW England. Soil cores closed at the base and containing a ceramic suction cup sampler were 'roofed' and watered every 2 weeks with bulk throughfall collected in the field. Treatments consisted of the inclusion of living roots from mature trees in the lysimeters and increasing (NH(4))(2)SO(4) deposition (NS treatment) to ambient + 75 kg N ha(-1) a(-1). Rainfall, throughfall and soil solutions were collected every 2 weeks during 18 months, and analysed for major cations and anions. NO(3)(-) fluxes significantly increased following NS treatment, and were balanced by increased Al(3+) losses. Increased SO(4)(2-) concentrations played a minor role in controlling soil solution cation concentrations. The soil exchange complex was dominated by Al and, during the experimental period, cores of all treatments 'switched' from Ca(2+) to Al(3+) leaching, leading to mean [Formula: see text] molar ratios in soil solution of NS treated cores of 0.24. The experiment confirmed that the most sensitive soils to acidification (through deposition or changing environmental conditions) are those with low base saturation, and with a pH in the lower Ca, or Al buffer ranges.
Показать больше [+] Меньше [-]A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements
2022
Rahman, Shafeeq Ur | Wang, Xiaojie | Shahzād, Muḥammad | Bashir, Owais | Li, Yanliang | Cheng, Hefa
Trace elements (TEs) from various natural and anthropogenic activities contaminate the agricultural water and soil environments. The use of nanoparticles (NPs) as nano-fertilizers or nano-pesticides is gaining popularity worldwide. The NPs-mediated fertilizers encourage the balanced availability of essential nutrients to plants compared to traditional fertilizers, especially in the presence of excessive amounts of TEs. Moreover, NPs could reduce and/or restrict the bioavailability of TEs to plants due to their high sorption ability. In this review, we summarize the potential influence of NPs on plant physiological attributes, mineral absorption, and TEs sorption, accumulation, and translocation. It also unveils the NPs-mediated TE scavenging-mechanisms at plant and soil interface. NPs immobilized TEs in soil solution effectively by altering the speciation of TEs and modifying the physiological, biochemical, and biological properties of soil. In plants, NPs inhibit the transfer of TEs from roots to shoots by inducing structural modifications, altering gene transcription, and strengthening antioxidant defense mechanisms. On the other hand, the mechanisms underpinning NPs-mediated TEs absorption and cytotoxicity mitigation differ depending on the NPs type, distribution strategy, duration of NP exposure, and plants (e.g., types, varieties, and growth rate). The review highlights that NPs may bring new possibilities for resolving the issue of TE cytotoxicity in crops, which may also assist in reducing the threats to the human dietary system. Although the potential ability of NPs in decontaminating soils is just beginning to be understood, further research is needed to uncover the sub-cellular-based mechanisms of NPs-induced TE scavenging in soils and absorption in plants.
Показать больше [+] Меньше [-]Rape straw application facilitates Se and Cd mobilization in Cd-contaminated seleniferous soils by enhancing microbial iron reduction
2022
Lyu, Chenhao | Li, Lei | Liu, Xinwei | Zhao, Zhuqing
Many naturally seleniferous soils are faced with Cd contamination problem, which severely limits crop cultivation in these areas. Straw returning has been widely applied in agricultural production due to its various benefits to soil physicochemical properties, soil fertility, and crops yield. However, effects of straw application on the fates of Se and Cd in Cd-contaminated seleniferous soils remain largely unclear. Therefore, the effects of straw application on the fates of Se and Cd in Cd-contaminated seleniferous soils were investigated in this study. The results showed that iron reduction driven by Clostridium and Anaeromyxbacter was responsible for the variations in Se and Cd fates in soil. Straw application respectively increased the gene copy numbers of Clostridium and Anaeromyxbacter by 19.5–56.3% and 33.6–39.8%, thus promoting iron reductive dissolution, eventually resulting in a high release amount of Se and Cd from Fe(III) (oxyhydr) oxides. Under reducing conditions, the released Cd was adsorbed by the newly formed metal sulfides or reacted with sulfides to generate CdS precipitates. Straw application decreased the soil exchangeable Se and soil exchangeable Cd concentration during flooding phase. However, straw application significantly increased Se/Cd in soil solution which had the highest bioavailability during flooding. In addition, straw application increased soil exchangeable Se concentration, but it had no significant effects on soil exchangeable Cd concentration after soil drainage. Taken together, straw application increased Se bioavailability and Cd mobility. Therefore, straw application is an effective method for improving Se bioavailability, but it is not suitable for the application to Cd-contaminated paddy soils. In the actual agricultural production, straw could be applied in seleniferous soils to improve Se bioavailability. At the same time, straw application should be cautious to avoid the release of Cd from Cd-contaminated soil.
Показать больше [+] Меньше [-]Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process
2021
Beiyuan, Jingzi | Fang, Linchuan | Chen, Hansong | Li, Mengdi | Liu, Dongdong | Wang, Yunqiang
(S,S)-ethylenediaminedisuccinic acid (EDDS) has a strong capacity to mobilize potentially toxic elements (PTEs) in phytoextraction. It can release NH₄⁺-N via biodegradation, which can enhance N supply to soil thereafter promote plant growth and plant resistance to PTEs. However, the advanced feature of released N in the EDDS-enhanced phytoextraction remains unclear. In the current study, the effects of N supply released from EDDS on ryegrass phytoextraction and plant resistance to PTEs were investigated in detail by a comparison with urea. Our results supported that the addition of both EDDS and urea increased N concentration in soil solution, yet EDDS needed more time to release available N for plant uptake and transported more N from root to shoot. Additionally, EDDS significantly increased the concentration of all targeted PTEs, i.e. Cu, Zn, Cd, and Pb, in the soil solution, which results in higher levels of their occurrence in plant biomass compared with urea. By contrast, the supply of N slightly enhanced the ryegrass uptake of micro-nutrients, i.e. Cu and Zn, yet it caused negligible effects on nonessential elements, i.e. Cd and Pb. The mobilized PTEs by EDDS lead to elevated oxidative stress because higher levels of malondialdehyde and O₂•⁻ were observed. The supply of N attenuated oxidative stress caused by O₂•⁻ and H₂O₂, which was associated with enhanced activities of superoxide dismutase and peroxidase. Our results advanced the understanding of the exogenous N supply and metal resistance mechanisms in the EDDS-enhanced phytoextraction. This study also highlighted that EDDS can serve as a N source to ease N-deficient problems in PTEs-contaminated soils.
Показать больше [+] Меньше [-]Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment
2021
Lian, Mingming | Wang, Longfei | Feng, Qiaoqiao | Niu, Liyong | Zhao, Zongsheng | Wang, Pengtao | Song, Chunpeng | Li, Xiaohong | Zhang, Zhijun
Heavy metal contamination has been threatening the health of human beings. To decrease the bio-toxicity of heavy metals, a thiol-functionalized nano-silica (SiO₂-SH) was adopted to remediate the soil contaminated by lead (Pb), cadmium (Cd) and copper (Cu). The remediation effect of SiO₂-SH on contaminated soils was investigated by the uptake of the heavy metals into lettuce and pakchoi in pot experiment. The bio-toxicity of the SiO₂-SH was evaluated, and its immobilization mechanisms were proposed by the fraction distribution of Cd, Pb and Cu. It was found that the SiO₂-SH can significantly reduce the uptake of Cd, Pb, Cu into pakchoi by 92.02%, 68.03%, 76.34% and into lettuce by 89.81%, 43.41%, 5.76%, respectively. The chemical species analyses of Cd, Pb, Cu indicate SiO₂-SH can transform the heavy metal in acid soluble states into reducible fraction and oxidizable fraction, thereby inhibiting the extraction of heavy metals into soil solution. The concentrations of microbial biomass carbon, organic matter, and cation exchange capacity of the soil increased while the soil bulk density decreased after remediation. Those changes demonstrate that SiO₂-SH not only has no bio-toxic impact on the soil environment but also improves the soil environment, which proves the prepared SiO₂-SH is environmental-friendly. The SiO₂-SH could be a promising amendment for heavy metal contaminated soils.
Показать больше [+] Меньше [-]The vital function of humic acid with different molecular weight in controlling Cd and Pb bioavailability and toxicity to earthworm (Eisenia fetida) in soil
2020
Bai, Hongcheng | Luo, Mei | Wei, Shiqiang | Jiang, Zhenmao | He, Mingjing
Humic acid (HA) plays vital roles in regulating the environmental behaviors of metals and thus their toxicity to biota. However, the inner relation between metal bioavailability to soil organisms and the presence of HA with different molecular weight (Mw) is not well documented. In this study, we separated HAs into four fractions with Mw range of 5-30k Da, and discussed their ability to alleviating the toxicity of Cd and Pb to earthworm. The bioaccumulation capacities (Cₘₐₓ) increased in order of: UF1<UF2<UF3<UF4, which is in line with the variations of bioavailable concentrations of Cd and Pb in soil. Variations of Mw and binding capacities of HA determine the accumulation behavior in soil solution. The unsatisfactory of biotic ligand model fitting and the differences in fractions of the total biotic ligand sites (f) in earthworm bound by Cd and Pb suggested that only free species of Cd could be considered as biological available to earthworm, while the Pb–HAs complexes have potential ability to interact with earthworm membrane. Antioxidant enzymes are effective biomarkers, and HA with lower Mw play more important roles in restricting the toxicity of soil Cd and Pb to earthworm. These results reveal the different mechanism for HA controlling metal bioavailability between Cd and Pb in soil environment.
Показать больше [+] Меньше [-]Nitrogen induced DOC and heavy metals leaching: Effects of nitrogen forms, deposition loads and liming
2020
Zia, Afia | van den Berg, Leon | Riaz, Muhammad | Arif, Muhammad | Zia, Dania | Khan, Shawana J. | Ahmad, Muhammad Nauman | Attaullah, | Ahsmore, Mike
Atmospheric nitrogen (N) deposition is believed to accelerate dissolved organic carbon (DOC) production and could lead to increased heavy metal mobility into water resources. We sampled intact soil cores from the Isle of Skye with low background N deposition history and having Serpentine rock known for its higher heavy metal concentrations including zinc (Zn), copper (Cu), nickel (Ni) and lead (Pb). The effects of 16 (16kgN) and 32 kg N ha⁻¹ year⁻¹ (32kgN), and liming with 32kgN (32kgN+Lime) on soil solution chemistry and heavy metal mobilization were investigated over the 15-month study. Nitrogen in deposition load was added at five ammonium (NH₄⁺) to nitrate (NO₃⁻) ratios of 9:1, 5:1, 1:1, 1:5 and 1:9 along NO₃⁻dominance. We found significant effects of load on Cu and NH₄⁺/NO₃⁻ ratio on pH, DOC and Zn in soil solution. However, under lime and ratio experimental factors, liming significantly influenced pH, DOC, Cu and Pb, and NH₄⁺/NO₃⁻ ratio pH, DOC, Ni and Zn whereas interactions between lime and ratio was significant for Ni and Cu. pH and DOC increased with N load, liming and NO₃⁻ dominance, and both correlated significantly positively. Liming under NH₄⁺ dominance enhanced DOC production due to supply of base cations in lime. Mobilization of Cu, Ni and Pb was driven by DOC concentrations and, therefore, increased with load, liming and NO₃⁻ dominance in deposition. However, in contrast, low pH and high NH₄⁺ dominance was associated with Zn mobilization in soil solution. On the contrary, despite of some patterns, heavy metals in soil HNO₃ extracts were devoid of any load, lime and NH₄⁺/NO₃⁻ ratio effects. Our study suggests that the effects of N load and forms in deposition on sites with high accumulated loads of metals need to be better quantified through soil solution partitioning models.
Показать больше [+] Меньше [-]Lead was mobilized in acid silty clay loam paddy soil with potassium dihydrogen phosphate (KDP) amendment
2019
Xu, Qiao | Ye, Binhui | Mou, Xiaoyu | Ye, Jien | Liu, Wenyu | Luo, Yating | Shi, Jiyan
The immobilization effectiveness between Pb and phosphorus in soil varies with soil types. To clarify the effect of phosphate on the availability of Pb in agricultural soil, a culture experiment with three types of paddy soil was performed with potassium dihydrogen phosphate (KDP) added. EDTA, DGT and in-situ solution extraction methods were used to represent different available Pb content. Results showed that the concentration of EDTA-Pb in HN soil was slightly elevated after exogenous KDP added. The supplement of 300 mg/kg KDP significantly increased the content of soluble Pb in both acid silty clay loam soil and neutral silty loam soil (increased by 104.65% and 65.12%, respectively). However, there was no significant influence of KDP on the concentration of DGT extracted Pb. XANES results showed that Pb(OH)2, PbHPO4, humic acid-Pb and GSH-Pb were the major speciation of Pb in soil colloids. The proportion of Pb(OH)2 and humic acid-bounded Pb in soil colloids were elevated after exogenous KDP added. Our results indicated that there was a mobilization effect of KDP on Pb by increasing the amount of colloidal Pb in soil solution, especially in acid silty clay loam paddy soil. Such colloid-facilitated transport might promote the uptake of Pb in rice and pose a potential threat to human health.
Показать больше [+] Меньше [-]Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils
2019
Wang, Meng | Chen, Shibao | Chen, Li | Wang, Duo
Land degradation by salinization and sodification changes soil function, destroys soil health, and promotes bioaccumulation of heavy metals in plants, but little is known about their fundamental mechanisms in shaping microbial communities and regulating microbial interactions. In this study, we explored the impact of saline-alkaline (SA) stress on soil bacterial and fungal community structures in different Cd-contaminated soils of Dezhou, Baoding, Xinxiang, Beijing and Shenyang cities from the North China Plain, China. Increased soil salinity and alkalinity enhanced Cd availability, indicated by significant increases in available Cd2+ in soil solution of 34.1%–49.7%, soil extractable Cd of 32.0–51.6% and wheat root Cd concentration of 24.5%–40.2%, as well as decreased activities of antioxidative enzymes of wheat root when compared with CK (no extra neutral or alkaline salts added). Soil bacteria were more active in response to the SA stress than fungi, as the significant structural reorganization of soil bacterial microbiota rather than fungal microbiota between SA and CK treatments was illustrated by principal component analysis. Adding neutral and alkaline salts enriched oligotrophic and haloalkaliphilic taxa in the Sphingobacteriaceae, Cellvibrionaceae, and Caulobacteraceae bacterial families, but decreased some Acidobacteria such as subgroup 6_norank, which was a sensitive biomarker that responded only to Cd contamination in CK-treated soils. Conversely, fungi were more sensitive to soil differences than bacteria: the composition of the fungal community was significantly different among different soil types. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the microbial community structure and network interactions were altered to strengthen the adaptability of microorganisms to SA stress; the changes in structure and network interactions were proposed to contribute to competitive interactions. Most of the keystone genera identified in SA-treated soils, such as Blastococcus, Gemmatimonas, RB41, or Candida, had relatively low abundances (<1%), indicating their disproportionate ecological roles in triggering resistance or tolerance to SA stress and Cd toxicity.
Показать больше [+] Меньше [-]