Уточнить поиск
Результаты 1-10 из 23
Capability of Reused Waste from Aluminum Industry (Red Mud) in Iran to Improve Compressive Strength of Loose Soil
2019
Daryabeigi Zand, A. | Rabiee Abyaneh, M. | Hoveidi, H.
Jajarm Alumina Plant, the only Alumina powder producer in Iran, generates 500,000 tons of red mud annually. The commonest method for final disposal of red mud in Iran is Tailing dam which is neither cost-effective nor environmentally-friendly. The main objective of this study is to evaluate the possibility of red mud recovery to be used for stabilization of loose soils. Red mud samples have been collected from tailing dam of Jajarm Alumina Plant to be characterized, using X-Ray Fluorescence (XRF). The soil stabilizer has been made by mixing red mud, steel slag, sodium metasilicate, and sodium hydroxide. In order to study the effect of soil stabilizer, five soil samples have been prepared which contain clay, sand, and wind-blown sand ranging from zero to 4 millimeters. Findings show that adding soil stabilizer with red mud significantly enhances compressive strength of soil samples (4.2, 18.2, 5.4, 4, and 4.1 in S1 to S5 samples, respectively). Also the results demonstrate that the red mud, produced from Aluminum industry in Iran, might be successfully used to stabilize loose soils, thereby enhancing their compressive characteristics, reducing environmental issues associated with uncontrolled disposal of such wastes as well as promoting integrated solid waste management strategies.
Показать больше [+] Меньше [-]LONG-TERM stability of arsenic in iron amended contaminated soil
2021
Kumpiene, Jurate | Carabante, Ivan | Kasiuliene, Alfreda | Austruy, Annabelle | Mench, Michel | Luleå University of Technology = Luleå Tekniska Universitet (LUT) | Institut Ecocitoyen pour la Connaissance des Pollutions [Fos-sur-Mer] | Biodiversité, Gènes & Communautés (BioGeCo) ; Université de Bordeaux (UB)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | The La Combe de Saut experiment was funded by ADEME and the LIFE project DIFPOLMINE. The Reppel experiment was set up under the EU FP5 Phytorehab project. Experiments in Sweden were financed by the Swedish Research Council FORMAS and European Union Structural Funds and New Objective 1, North Sweden Soil Remediation Center (MarksaneringsCentrum Norr - MCN). Stanford Synchrotron Radiation Lightsource is acknowledged for granting our beamtime proposal (4663) under which X-Ray absorption measurements presented in this work were performed.
International audience | This study aimed at elucidating the long-term efficiency of soil remediation where chemical stabilization of arsenic (As) contaminated soil using zerovalent iron (Fe) amendments was applied. A combination of chemical extraction and extended X-Ray absorption fine structure (EXAFS) spectroscopy technique was applied on soils collected from five laboratory and field experiments in Sweden and France. All soils were treated with 1 wt% of zerovalent Fe grit 2e15 years prior to the sampling. The results indicate that all studied soils, despite the elapsed time since their amendment with Fe grit, had substantial amounts of ferrihydrite and/or lepidocrocite. These metastable and the most reactive Fe (oxyhydr)oxides (mainly ferrihydrite) were still present in substantial amounts even in the soil that was treated 15 years prior to the sampling and contributed most to the As immobilisation in the amended soils. This increases confidence in the long-term efficiency of As immobilisation using zerovalent Fe amendments. Both applied methods, sequential extraction and EXAFS, were in line for most of the samples in terms of their ability to highlight As immobilisation by poorly crystalline Fe phases.
Показать больше [+] Меньше [-]Use of Recycled Construction and Demolition (C&D) Wastes in Soil Stabilization
2022
S. P. Sangeetha, Zhimoholi T. Chophi, Pooja Venkatesh | Muhammad Fahad
With the growing construction sector, there is a constant rise in wastes generated by both construction and demolition activities. According to an estimate by Building Material Promotion Council (BMPTC), 150 million tonnes of construction and demolition (C&D) wastes are generated in India annually. However, the official recycling capacity is a meagre6, 500 tonnes per day (TPD) - just about 1 percent. This paper examines the properties of Black cotton soil and investigates the use of recycled C&D wastes in soil stabilization of black cotton soil. This research focuses on the inexpensive and eco-friendly nature of C&D wastes as an admixture for soil stabilization. The tests were performed using different proportions of recycled C&D wastes in the proportions: 5%, 10%, 15%, 20%, and 25%, to increase the strength of black cotton soil. California Bearing Ratio (CBR) showed an increase from 2% to 18.09%, Maximum Dry Density (MDD) showed a decrease from 2.107 g.cc-1 to 1.69 g.cc-1, and Optimum Moisture Content (OMC) showed a variation and increased from 15% to 18.09% with the addition of 25% C&D wastes.
Показать больше [+] Меньше [-]Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil
2020
Su, Binglin | Lin, Jiajiang | Owens, Gary | Chen, Zuliang
Iron nanoparticles (Fe NPs) have often been used for in situ remediation of both groundwater and soil. However, the impact of Fe NPs on the distribution and transformation of As species in contaminated soil is still largely unknown. In this study, green iron oxide nanoparticles synthesized using a euphorbia cochinchinensis leaf extract (GION) were used to stabilize As in a contaminated soil. GION exhibited excellent As stabilization effects, where As in non-specifically-bound and specifically-bound fractions decreased by 27.1% and 67.3% after 120 days incubation. While both arsenate (As (V)) and arsenite (As (III)) decreased after GION application, As (V) remained the dominant species in soil. X-ray photoelectron spectroscopy (XPS) confirmed that As (V) was the dominant species in specifically-bound fractions, while As (III) was the dominant species in amorphous and poorly-crystalline hydrous oxides of Fe and Al. Correlation analysis showed that while highly available As fractions were negatively correlated to oxalate and DCB extractable Fe, they were positively correlated to Fe²⁺ content, which indicated that Fe cycling was the main process influencing changes in As availability. X-ray fluorescence (XRF) spectroscopy also showed that the Fe₂O₃ content increased by 47.9% following GION soil treatments. Overall, this work indicated that As would be transformed to more stable fractions during the cycling of Fe following GION application and that the application of GION, even in small doses, provides a low-cost and ecofriendly method for the stabilization of As in soil.
Показать больше [+] Меньше [-]Elevated ozone and nitrogen deposition affect nitrogen pools of subalpine grassland
2015
Bassin, Seraina | Käch, David | Valsangiacomo, Alain | Mayer, J. (Jochen) | Oberholzer, Hans-Rudolf | Volk, Matthias | Fuhrer, Jürg
In a free-air fumigation experiment with subalpine grassland, we studied long-term effects of elevated ozone (O3) and nitrogen (N) deposition on ecosystem N pools and on the fate of anthropogenic N. At three times during the seventh year of exposure, N pools and recovery of a stable isotope tracer (15N) were determined in above- and belowground plant parts, and in the soil. Plants were much better competitors for 15N than soil microorganisms. Plant N pools increased by 30–40% after N addition, while soil pools remained unaffected, suggesting that most of the extra N was taken up and stored in plant biomass, thus preventing the ecosystem from acquiring characteristics of eutrophication. Elevated O3 caused an increase of N in microbial biomass and in stabilized soil N, probably resulting from increased litter input and lower litter quality. Different from individual effects, the interaction between the pollutants remained partly unexplained.
Показать больше [+] Меньше [-]Soil stabilization/solidification (S/S) agent---water-soluble thiourea formaldehyde (WTF) resin: Mechanism and performance with cadmium (Ⅱ)
2021
Liu, Shejiang | Miao, Chen | Yao, Shanshan | Ding, Hui | Zhang, Kai
It is vital for the development and application of heavy metal stabilization/solidification (S/S) agents to reveal the mechanism of the reaction between water-soluble thiourea formaldehyde (WTF) resin and heavy metal and evaluate its repairing effect. Based on the density functional theory analysis of the WTF resin structure, the mechanism analysis and scanning electron microscope (SEM) showed that the three-dimensional network structure with thiocarbonyl and hydroxyl groups is very conducive to the capture of Cd²⁺. The reduction rate of Cd²⁺ in soil added WTF resin could reach 70.6%–86.0%. The result of BCR’s sequential extraction also proved that the 86.4%–94.1% of Cd in the soil repaired by WTF resin changed from acid-soluble state to residue state. Enzyme activity analysis and 16sRNA sequencing experiments showed that such a structure does not harm soil health. The urease and phosphatase tests showed the nitrogen and phosphorus cycle of the soil added WTF resin was repaired. Even compared with the remediation agents Na₂S and hydroxyapatite, WTF resin still performed better in repairing soil health. These findings provide valuable insights into the efficient causes of WTF resin and its harmless effects on soil. The results obtained provide a critical reference for the future application of practical and gentle heavy metal S/S agents.
Показать больше [+] Меньше [-]LONG-TERM stability of arsenic in iron amended contaminated soil
2021
Kumpiene, Jurate | Carabante, Ivan | Kasiuliene, Alfreda | Austruy, Annabelle | Mench, Michel
This study aimed at elucidating the long-term efficiency of soil remediation where chemical stabilization of arsenic (As) contaminated soil using zerovalent iron (Fe) amendments was applied. A combination of chemical extraction and extended X-Ray absorption fine structure (EXAFS) spectroscopy technique was applied on soils collected from five laboratory and field experiments in Sweden and France. All soils were treated with 1 wt% of zerovalent Fe grit 2–15 years prior to the sampling. The results indicate that all studied soils, despite the elapsed time since their amendment with Fe grit, had substantial amounts of ferrihydrite and/or lepidocrocite. These metastable and the most reactive Fe (oxyhydr)oxides (mainly ferrihydrite) were still present in substantial amounts even in the soil that was treated 15 years prior to the sampling and contributed most to the As immobilisation in the amended soils. This increases confidence in the long-term efficiency of As immobilisation using zerovalent Fe amendments. Both applied methods, sequential extraction and EXAFS, were in line for most of the samples in terms of their ability to highlight As immobilisation by poorly crystalline Fe phases.
Показать больше [+] Меньше [-]Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects
2020
Zhao, Bin | O’Connor, David | Shen, Zhengtao | Tsang, Daniel C.W. | Rinklebe, Jörg | Hou, Deyi
The stability of mercury (Hg) contamination in soil environments can change over time. This has implications for agricultural sites under long-term management after in situ treatment involving soil amendments. In this study, rice husk biochar (RHB) and sulfur modified rice husk biochar (SRHB) were synthesized and applied (dosage = 5% dry wt.) to a Hg polluted agricultural soil collected from Guizhou province, Southern China (soil total Hg content = 28.3 mg/kg; C = 2%; and, S = 0.1%). The long-term stabilization effectiveness of the soil treatments was evaluated by a combined approach involving: (i) accelerated aging for 104 simulated years; (ii) soil extraction as a proxy for plant uptake; and, (iii) sequential extraction to identify Hg fractions. The SRHB amendment raised the soil’s total S content by approximately an order of magnitude (to 0.9%), which remained at a generally constant level throughout the simulation. The initial pH levels for the untreated and treated soils were alkaline and remained between 7.0 and 7.5 for the first 50 years of simulated aging, before decreasing as the simulation time increased further. The pH of the SRHB treated soils did not drop below that of untreated soils during the simulation. Soil extraction tests with 0.1 M HCl solution indicated that RHB and SRHB treatments could effectively immobilize the Hg in soil for at least 50 and 75 simulated years, respectively. At simulated year 50, the amount of Hg extracted from RHB and SRHB treated soils was <200 ng/L and <100 ng/L, respectively. Thus, showing SRHB to be a particularly promising remedial option. The soil Hg was mostly associated with the stable sequential extraction fractions (F3-5). By the end of the simulation, the F5 fraction for SRHB and RHB treated soils reduced by 44.6%, and 42.0%, respectively, whereas the F4 fraction increased by >400% in both cases. In summary, SRHB may provide long-lasting Hg stabilization at contaminated sites. Therefore, further research toward the development of this stabilization technology is warranted.
Показать больше [+] Меньше [-]Reclamation and vegetative restoration of problem soils and disturbed lands
1986
Brown, Darrell
Stabilization of Dredged Soil by Compensating the Sand Content in the Jhelum River
2024
Yasir Hamid, Owais Shafi Malik, Huma Khan, Gauhar Mehmood and Amina Zakiah
River dredging is crucial for mitigating the risk of floods by enhancing the water-carrying capacity of rivers. Nevertheless, the key difficulty lies in the appropriate disposal of dredged material, resulting in escalated costs. Predominantly consisting of silt, the dredged material demonstrates constrained bearing capacity and strength. Nonetheless, there is a prospect to derive value from excavated sediments, with potential applications in diverse public works projects. The processed product derived from dredged material can serve diverse purposes, such as filling railway and highway embankments, as well as the subgrade of pavements. The comprehensive study involved analyzing the fundamental properties of the dredged material collected from the Allochibagh flood channel of the Jhelum River. The analysis focused on determining the basic geotechnical properties of the soil mass. The tests unveiled the fine and cohesive nature of the dredged soil. To enhance its properties, sand was introduced as a stabilizing agent in varying proportions. The investigation revealed an initial augmentation in compressive strength as the proportion of sand increased, attaining an optimal mixture whereafter the strength declined. This study explores the utilization of sand as a stabilizing agent for dredged soil to enhance its strength and optimize its application. The process of stabilizing dredged soil with sand demands a thorough examination of hydrogeological processes, the specific characteristics of the dredged soil, and the intricate transport of contaminants. This formal and multidisciplinary effort seeks to elevate the overall stability of the soil.
Показать больше [+] Меньше [-]