Уточнить поиск
Результаты 1-10 из 43
Protective role of fine silts for PAH in a former industrial soil
2013
Pernot, Audrey | Ouvrard, Stéphanie | Leglize, Pierre | Faure, Pierre | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement (INEE) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
International audience | An original combined organic geochemistry and soil science approach was used to elucidate PAH availability controlling factors in a multi-contaminated industrial soil. Water granulodensimetric fractionation was applied to obtain five water-stable material fractions. These were characterized by elemental, molecular and mineral analysis, and microscopic observations. Among the different fractions, fine silts distinguished themselves by higher carbon and nitrogen contents, lower C/N ratio, an enrichment in total PAH and especially high molecular weight compounds, a coal tar signature and the lowest PAH availability. This fine silt fraction seemed to play a protective role for PAH that might be explained by its size and/or its specific reactivity. The mineral phases present in this fraction were proposed to explain the protection of organic matter. This led to a specific molecular signature of OM, having higher sorption properties both processes (sorption and mineral-bound protection) resulting in a lower PAH availability. (C) 2013 Elsevier Ltd. All rights reserved.
Показать больше [+] Меньше [-]Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China
2022
Liu, Mingxuan | Hou, Renjie | Fu, Qiang | Li, Tianxiao | Zhang, Shoujie | Su, Anshuang
The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high–latitude cold regions, this study simulated freeze–thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze–thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze–thaw cycles caused the total amount of PTEs to have a U–shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28–56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.
Показать больше [+] Меньше [-]Protective role of fine silts for PAH in a former industrial soil
2013
Pernot, Audrey | Ouvrard, Stéphanie | Leglize, Pierre | Faure, Pierre
An original combined organic geochemistry and soil science approach was used to elucidate PAH availability controlling factors in a multi-contaminated industrial soil. Water granulodensimetric fractionation was applied to obtain five water-stable material fractions. These were characterized by elemental, molecular and mineral analysis, and microscopic observations. Among the different fractions, fine silts distinguished themselves by higher carbon and nitrogen contents, lower C/N ratio, an enrichment in total PAH and especially high molecular weight compounds, a coal tar signature and the lowest PAH availability. This fine silt fraction seemed to play a protective role for PAH that might be explained by its size and/or its specific reactivity. The mineral phases present in this fraction were proposed to explain the protection of organic matter. This led to a specific molecular signature of OM, having higher sorption properties both processes (sorption and mineral-bound protection) resulting in a lower PAH availability.
Показать больше [+] Меньше [-]Protozoan predation in soil slurries compromises determination of contaminant mineralization potential
2012
Badawi, Nora | Johnsen, Anders R. | Brandt, Kristian K. | Sørensen, Jan | Aamand, Jens
Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, ¹⁴C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period.
Показать больше [+] Меньше [-]Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils
2016
Park, Jong Yol | Huwe, Bernd
We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0–8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix.
Показать больше [+] Меньше [-]Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil
2013
Sneath, Helen E. | Hutchings, Tony R. | de Leij, Frans A.A.M.
Sites contaminated with mixtures of metals, metalloids and organics are difficult to remediate as each contaminant type may require a different treatment. Biochar, with high metal sorption capacity, used singly and in combination with iron filings, is investigated in microcosm trials to immobilise metal(loid)s within a contaminated spoil, thereby enabling revegetation and degradation of organic pollutants. A mine spoil, contaminated with heavy metals, arsenic and spiked with phenanthrene was treated with either 1%w/w biochar, 5%w/w iron or their combination, enhancing phenanthrene degradation by 44–65%. Biochar treatment reduced Cu leaching and enabled sunflower growth, but had no significant effect on As mobility. Iron treatment reduced Cu and As leaching but negatively impacted soil structure and released high levels of Fe causing sunflower plant mortality. The combined treatment reduced both Cu and As leaching and enabled sunflower growth suggesting this could be a useful approach for treating co-contaminated sites.
Показать больше [+] Меньше [-]Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis
2022
Qiu, Yifei | Zhou, Shenglu | Zhang, Chuchu | Su, San | Qin, Wendong
The soil environment serves as an assembling area for microplastics, and is an important secondary source of microplastics in other environmental media. Recently, soil microplastics have been extensively studied; however, high variability is observed among the research results owing to different soil properties, and the complexity of soil microplastic composition. The present study amassed the findings of 2886 experimental groups, across 38 studies from 2016 to 2022, and used meta-analysis to quantitatively analyze the differences in the effects of microplastic exposure on soil physicochemical properties and biota. The results showed that among the existing soil microplastic research, agricultural soils maintained a higher environmental exposure distribution than other environments. Microplastic fibers and fragments were the predominant shapes, indicating that the extensive use of agricultural films are the primary influencing factor of soil microplastic pollution at present. The results of the meta-analysis found that microplastic exposure had a significant negative effect on soil bulk density (lnRR = −0.04) and aggregate stability (lnRR = −0.085), indicating that microplastics may damage the integrity of soil structure or damage the soil surface. The significant changes in plant root biomass and soil phosphatase further signified the potential impact of microplastics on soil nutrient and geochemical element cycling. We further constructed species sensitivity distribution curves, revealing that invertebrates had a higher species sensitivity to microplastics, as they can pass through the gut wall of soil nematodes, causing oxidative stress and affecting gene expression. In general, soil is an interconnected complex, and microplastic exposure can directly or indirectly interact with environmental chemical processes in the soil environment, potentially harming the soil ecosystem; however, current research remains insufficient with respect to breadth and depth in terms of the comprehensive “source-sink” mechanism of soil microplastics, the hazard of exposure, and the overall toxic effects.
Показать больше [+] Меньше [-]Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent
2019
Zhao, Ling | Nan, Hongyan | Kan, Yue | Xu, Xiaoyun | Qiu, Hao | Cao, Xinde
Biochar as a porous carbon material could be used for improving soil physical and chemical properties, while insufficient attention has been paid to potential risks induced by infiltration of heavy metals in the runoff water flowing through biochar-amended soil. Four different soil-biochar matrices with same volumes were constructed including soil alone (M1), biochar alone (M2), soil-biochar layering (M3) and soil-biochar mixing (M4). Leaching experiments were conducted with Pb, Cu, and Zn contaminated runoff water. Results showed that biochar amendment greatly improved the water permeation, and the infiltration rates in M2, M3, and M4 were 2.85–23.0 mm min⁻¹, being much higher than those in M1 (1.33–4.05 mm min⁻¹), though the rates decreased as the leaching volumes increased. However, biochar induced more Pb, Cu, and Zn infiltrated through soil-biochar matrix. After 350-L leaching, M1 retained about 95% Pb, 90% Cu, and 36% Zn, while M2 only retained 4.80% Pb, 17.4% Cu, and 4.01% Zn; about 30% Pb, 80% Cu, and 15% Zn were retained in M3 and M4. Notably, Zn was trapped first and then re-leached into the filtrate, which resulted in a much higher effluent Zn than the influent Zn at the later stage. However, the unit weight of biochar showed a higher capacity for retaining heavy metals compared to per unit of soil. Under the dynamic water flow, all benefits and disadvantages induced by biochar were weakened with its physical disintegration. Biochar as soil amendment can enhance plant growth via ameliorating soil structure, while it would pose risks to environment because of large penetration of heavy metals. If biochar was compacted to form a denser physical structure, perhaps more heavy metals could be retained.
Показать больше [+] Меньше [-]Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites
2017
Thavamani, Palanisami | Samkumar, R Amos | Satheesh, Viswanathan | Subashchandrabose, Suresh R. | Ramadass, Kavitha | Naidu, R. | Venkateswarlu, Kadiyala | Megharaj, Mallavarapu
Derelict mines pose potential risks to environmental health. Several factors such as soil structure, organic matter, and nutrient content are the greatly affected qualities in mined soils. Soil microbial communities are an important element for successful reclamation because of their major role in nutrient cycling, plant establishment, geochemical transformations, and soil formation. Yet, microorganisms generally remain an undervalued asset in mined sites. The microbial diversity in derelict mine sites consists of diverse species belonging to four key phyla: Proteobacteria, Acidobacteria, Firmicutes, and Bacteroidetes. The activity of plant symbiotic microorganisms including root-colonizing rhizobacteria and ectomycorrhizal fungi of existing vegetation in the mined sites is very high since most of these microbes are extremophiles. This review outlines the importance of microorganisms to soil health and the rehabilitation of derelict mines and how microbial activity and diversity can be exploited to better plan the soil rehabilitation. Besides highlighting the major breakthroughs in the application of microorganisms for mined site reclamation, we provide a critical view on plant−microbiome interactions to improve revegetation at the mined sites. Also, the need has been emphasized for deciphering the molecular mechanisms of adaptation and resistance of rhizosphere and non-rhizosphere microbes in abandoned mine sites, understanding their role in remediation, and subsequent harnessing of their potential to pave the way in future rehabilitation strategies for mined sites.
Показать больше [+] Меньше [-]Use of Amendments to Restore Ecosystem Function to Metal Mining-Impacted Sites: Tools to Evaluate Efficacy
2016
Brown, Sally L. | Chaney, Rufus L.
As in situ use of amendments for restoration of metal-contaminated mining sites becomes increasingly accepted, the expected level of ecosystem function at these sites will increase. Use of appropriate tools to measure both the level and value of that function is critical to expand use of this approach. For these sites, amendment mixtures must reduce metal availability in situ and restore ecosystem function. Combinations of mixtures, typically consisting of a material with high metal binding capacity (cyclonic ashes, municipal biosolids, or other materials rich in Fe, Al, or Mn oxides), material to adjust soil pH (sugar beet lime, cement kiln dust, dolomitic limestone), and an organic residual to provide soil structure and nutrients (composts, animal manures, municipal biosolids) have been tested in multiple lab and field trials on metal-contaminated sites. This review focuses on field tests of this approach with the goal of providing methods to quantify reduction of hazard and restoration of functional systems. Methods to evaluate success of amendments including extractions to measure changes in metal availability, microbial function and diversity, phytoavailability of metals, and earthworm and small mammal assays are discussed. In most cases, measures of metal availability and ecosystem function are related. For example, surveys of small mammals on restored sites provide information on metal availability as well as suitability of restored habitat. Additional measures of ecosystem function including soil fertility, physical properties, and diversity of habitat are described. Finally, measures of the value of this approach for restoring ecosystems are detailed.
Показать больше [+] Меньше [-]