Уточнить поиск
Результаты 1-10 из 1,528
Pluies acides, production de nitrate dans les sols forestiers et annees de secheresse estivale: cofacteurs de risque de deperissement des forets. Reflexions sur la synergie.
1989
Bardy J.A.
The relationship between the intensified heat waves and deteriorated summertime ozone pollution in the Beijing–Tianjin–Hebei region, China, during 2013–2017
2022
Wang, Ruonan | Bei, Naifang | Hu, Bo | Wu, Jiarui | Liu, Suixin | Li, Xia | Jiang, Qian | Tie, Xuexi | Li, Guohui
Summertime ozone (O₃) pollution has frequently occurred in the Beijing–Tianjin–Hebei (BTH) region, China, since 2013, resulting in detrimental impacts on human health and ecosystems. The contribution of weather shifts to O₃ concentration variability owing to climate change remains elusive. By combining regional air chemistry model simulations with near-surface observations, we found that anthropogenic emission changes contributed to approximately 23% of the increase in maximum daily 8-h average O₃ concentrations in the BTH region in June–July–August (JJA) 2017 (compared with that in 2013). With respect to the weather shift influence, the frequencies, durations, and magnitudes of O₃ exceedance were consistent with those of the heat wave events in the BTH region during JJA in 2013–2017. Intensified heat waves are a significant driver for worsening O₃ pollution. In particular, the prolonged duration of heat waves creates consecutive adverse weather conditions that cause O₃ accumulation and severe O₃ pollution. Our results suggest that the variability in extreme summer heat is closely related to the occurrence of high O₃ concentrations, which is a significant driver of deteriorating O₃ pollution.
Показать больше [+] Меньше [-]Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations
2022
Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.
Показать больше [+] Меньше [-]Secondary organic aerosol formation and source contributions over east China in summertime
2022
Li, Jie | Han, Zhiwei | Wu, Jian | Tao, Jun | Li, Jiawei | Sun, Yele | Liang, Lin | Liang, Mingjie | Wang, Qin'geng
Various precursor emissions and chemical mechanisms for secondary organic aerosol (SOA) formation were incorporated into a regional air quality model system (RAQMS) and applied to investigate the distribution, composition, and source contribution of SOA over east China in summer 2018. Model comparison against a variety of observations at a national scale demonstrated that the model was able to reasonably reproduce meteorological variables, O₃ and PM₂.₅ concentrations, and the model simulated SOA concentration generally agreed with observations, with the overall NMB of 7.0% and R of 0.4 in 10 cities over east China. The simulated period-mean SOA concentrations of 4–15 μg m⁻³ were mainly distributed over the North China Plain (NCP), the middle and lower reaches of the Yangtze River and Chongqing district. SOA dominated organic aerosol (OA) over China in summertime (90%). The percentage contributions to SOA from ASOA (SOA produced from anthropogenic volatile organic compounds (AVOC)), BSOA (SOA produced from biogenic volatile organic compounds (BVOC)), DSOA (SOA produced from aqueous uptake of glyoxal and methylglyoxal) and S/I-SOA (SOA produced from semi-volatile and intermediate volatile organic compounds) were estimated to be 48.3%, 28.6%, 14.3%, and 8.8% respectively, over east China in summertime. In terms of domain and period average, ASOA contributed most to SOA (59%) in north China, while BSOA contributed most to SOA (37.3%) in northeast China. The percentage contribution of DSOA to SOA reached 21.5% in southwest China. S/I-SOA accounted for approximately 10% of SOA in most areas of east China. This study reveals that while AVOC dominates SOA formation on average over east China, the SOA source contributions differ considerably in different regions of China. BVOC makes the same contribution to SOA formation as AVOC in northeast China and southwest China, where forest coverage and BVOC emission are higher and anthropogenic emissions are relatively low, highlighting the significant role of BVOC in summer SOA formation in China.
Показать больше [+] Меньше [-]Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions
2022
Lee, Hyung-Min | Park, Rokjin J.
South Korea has experienced a rapid increase in ozone concentrations in surface air together with China for decades. Here we use a 3-D global chemical transport model, GEOS-Chem nested over East Asia (110 E - 140 E, 20 N–50 N) at 0.25° × 0.3125° resolution, to examine locally controllable (domestic anthropogenic) versus uncontrollable (background) contributions to ozone air quality at the national scale for 2016. We conducted model simulations for representative months of each season: January, April, July, and October for winter, spring, summer, and fall and performed extensive model evaluation by comparing simulated ozone with observations from satellite and surface networks. The model appears to reproduce observed spatial and temporal ozone variations, showing correlation coefficients (0.40–0.87) against each observation dataset. Seasonal mean ozone concentrations in the model are the highest in spring (39.3 ± 10.3 ppb), followed by summer (38.3 ± 14.4 ppb), fall (31.2 ± 9.8 ppb), and winter (24.5 ± 7.9 ppb), which is consistent with that of surface observations. Background ozone concentrations obtained from a sensitivity model simulation with no domestic anthropogenic emissions show a different seasonal variation in South Korea, showing the highest value in spring (46.9 ± 3.4 ppb) followed by fall (38.2 ± 3.7 ppb), winter (33.0 ± 1.9 ppb), and summer (32.1 ± 6.7 ppb). Except for summer, when the photochemical formation is dominant, the background ozone concentrations are higher than the seasonal ozone concentrations in the model, indicating that the domestic anthropogenic emissions play a role as ozone loss via NOₓ titration throughout the year. Ozone air quality in South Korea is determined mainly by year-round regional background contributions (peak in spring) with summertime domestic ozone formation by increased biogenic VOCs emissions with persistent NOₓ emissions throughout the year. The domestic NOₓ emissions reduce MDA8 ozone around large cities (Seoul and Busan) and hardly increase MDA8 in other regions in spring, but it increases MDA8 across the country in summer. Therefore, NOₓ reduction can be effective in control of MDA8 ozone in summer, but it can have rather countereffect in spring.
Показать больше [+] Меньше [-]Environmental and anthropogenic factors associated with the likelihood of detecting Salmonella in agricultural watersheds
2022
Toro, Magaly | Weller, Daniel | Ramos, Romina | Diaz, Leonela | Alvarez, Francisca P. | Reyes-Jara, Angelica | Moreno-Switt, Andrea I. | Meng, Jianghong | Adell, Aiko D.
Surface water is one of the primary sources of irrigation water for produce production; therefore, its contamination by foodborne pathogens, such as Salmonella, may substantially impact public health. In this study, we determined the presence of Salmonella in surface water and characterized the relationship between Salmonella detection and environmental and anthropogenic factors. From April 2019 to February 2020, 120 samples from 30 sites were collected monthly in four watersheds located in two different central Chile agricultural regions (N = 1080). Water samples from rivers, canals, streams, and ponds linked to each watershed were obtained. Surface water (10 L) was filtrated in situ, and samples were analyzed for the presence of Salmonella. Salmonella was detected every month in all watersheds, with a mean detection percentage of 28% (0%–90%) across sampling sites, regardless of the season. Overall, similar detection percentages were observed for both regions: 29.1% for Metropolitan and 27.0% for Maule. Salmonella was most often detected in summer (39.8% of all summer samples tested positive) and least often in winter (14.4% of winter samples). Random forest analysis showed that season, water source, and month, followed by latitude and river, were the most influential factors associated with Salmonella detection. The influences of water pH and temperature (categorized as environmental factors) and factors associated with human activity (categorized as anthropogenic factors) registered at the sampling site were weakly or not associated with Salmonella detection. In conclusion, Salmonella was detected in surface water potentially used for irrigation, and its presence was linked to season and water source factors. Interventions are necessary to prevent contamination of produce, such as water treatment before irrigation.
Показать больше [+] Меньше [-]Suspect and non-targeted screening-based human biomonitoring identified 74 biomarkers of exposure in urine of Slovenian children
2022
Tkalec, Žiga | Codling, Garry | Tratnik, Janja Snoj | Mazej, Darja | Klánová, Jana | Horvat, Milena | Kosjek, Tina
Human exposure to organic contaminants is widespread. Many of these contaminants show adverse health effects on human population. Human biomonitoring (HBM) follows the levels and the distribution of biomarkers of exposure (BoE), but it is usually done in a targeted manner. Suspect and non-targeted screening (SS/NTS) tend to find BoE in an agnostic way, without preselection of compounds, and include finding evidence of exposure to predicted, unpredicted known and unknown chemicals. This study describes the application of high-resolution mass spectrometry (HRMS)-based SS/NTS workflow for revealing organic contaminants in urine of a cohort of 200 children from Slovenia, aged 6–9 years. The children originated from two regions, urban and rural, and the latter were sampled in two time periods, summer and winter. We tentatively identified 74 BoE at the confidence levels of 2 and 3. These BoE belong to several classes of pharmaceuticals, personal care products, plasticizers and plastic related products, volatile organic compounds, nicotine, caffeine and pesticides. The risk of three pesticides, atrazine, amitraz and diazinon is of particular concern since their use was limited in the EU. Among BoE we tentatively identified compounds that have not yet been monitored in HBM schemes and demonstrate limited exposure data, such as bisphenol G, polyethylene glycols and their ethers. Furthermore, 7 compounds with unknown use and sources of exposure were tentatively identified, either indicating the entry of new chemicals into the market, or their metabolites and transformation products. Interestingly, several BoE showed location and time dependency. Globally, this study presents high-throughput approach to SS/NTS for HBM. The results shed a light on the exposure of Slovenian children and raise questions on potential adverse health effects of such mixtures on this vulnerable population.
Показать больше [+] Меньше [-]Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China
2022
Zhang, Donghuan | Ren, Hong | Hu, Wei | Wu, Libin | Ren, Lujie | Deng, Junjun | Zhang, Qiang | Sun, Yele | Wang, Zifa | Kawamura, Kimitaka | Fu, Pingqing
Lipids are important biogenic markers to indicate the sources and chemical process of aerosol particles in the atmosphere. To better understand the influences of biogenic and anthropogenic sources on forest aerosols, total suspended particles (TSP) were collected at Mt. Changbai, Shennongjia, and Xishuangbanna that are located at different climatic zones in northeastern, central and southwestern China. n-Alkanes, fatty acids and n-alcohols were detected in the forest aerosols based on gas chromatography-mass spectrometry. The total concentrations of aliphatic compounds ranged from 15.3 ng m⁻³ to 566 ng m⁻³, and fatty acids were the most abundant (44–95%) followed by n-alkanes and n-alcohols. Low molecular weight- (LFAs) and unsaturated fatty acids (UnFAs) showed diurnal variation with higher concentrations during the nighttime in summer, indicating the potential impact from microbial activities on forest aerosols. The differences of oleic acid (C₁₈:₁) and linoleic acid (C₁₈:₂) concentrations between daytime and nighttime increased at lower latitude, indicating more intense photochemical degradation occurred at lower latitude regions. High levels of n-alkanes during daytime in summer with higher values of carbon preference indexes, combining the strong odd carbon number predominance with a maximum at C₂₇ or C₂₉, implied the high contributions of biogenic sources, e.g., higher plant waxes. In contrast, higher concentrations of low molecular weight n-alkanes were detected in winter forest aerosols. Levoglucosan showed a positive correlation (R² > 0.57) with high- and low molecular weight aliphatic compounds in Mt. Changbai, but such a correlation was not observed in Shennongjia and Xishuangbanna. These results suggest the significant influence of biomass burning in Mt. Changbai, and fossil fuel combustion might be another important anthropogenic source of forest aerosols. This study adds useful information to the current understanding of forest organic aerosols at different geographical locations in China.
Показать больше [+] Меньше [-]Interrelationships among feather mercury content, body condition and feather corticosterone in a Neotropical migratory bird, the Purple Martin (Progne subis subis)
2022
Branco, Jonathan M. | Hingst-Zaher, Erika | Jordan-Ward, Renee | Dillon, Danielle | Siegrist, Joe | Fischer, Jason D. | Schiesari, Luis | von Hippel, Frank A. | Buck, C Loren
Purple Martins (Progne subis) are migratory birds that breed in North America and overwinter and complete their molt in South America. Many of the breeding populations are declining. The eastern North American subspecies of Purple Martin (P. subis subis) comprises >90% of all Purple Martins. This subspecies overwinters and molts in the Amazon Basin, a region that is high in mercury (Hg) contamination, which raises the possibility that observed declines in Purple Martins could be linked to Hg exposure. Exposure to Hg results in numerous and systemic negative health outcomes, including endocrine disruption. Corticosterone (CORT) is a primary modulator of the stress and metabolic axes of vertebrates; thus, it is important in meeting metabolic and other challenges of migration. Because feathers accumulate Hg and hormones while growing, quantification of Hg and CORT in feathers provides an opportunity to retrospectively assess Hg exposure and adrenal activity of birds using minimally invasive methods. We evaluated interrelationships among concentrations of total Hg (THg) and CORT in feathers that grew in the Amazon Basin and body condition (mass, fat score) of these birds in North America. Concentrations of THg in Purple Martin feathers ranged from 1.103 to 8.740 μg/g dw, levels associated with negative physiological impacts in other avian species. Concentrations of CORT did not correlate with THg concentration at the time of feather growth. However, we found evidence that THg concentration may negatively impact the ability of Purple Martins to accumulate fat, which could impair migratory performance and survivorship due to the high energy requirements of migration. This finding suggests potential carryover effects of Hg contamination at the wintering grounds in the Amazon to the summer breeding grounds in North America.
Показать больше [+] Меньше [-]Correlative distribution of DOM and heavy metals in the soils of the Zhangxi watershed in Ningbo city, East of China
2022
Wang, Zhe | Han, Ruixia | Muhammad, Azeem | Guan, Dong-Xing | Zama, Eric | Li, Gang
In peri-urban critical zones, soil ecosystems are highly affected by increasing urbanization, causing probably an intense interaction between dissolved organic matter (DOM) and heavy metals in soil. Such interaction is critical for understanding the biogeochemical cycles of both organic matter and heavy metals in these zones. However, limited research has reported the correlative distribution of DOM and heavy metals at high seasonal and spatial resolutions in peri-urban critical zones. In this study, 160 soil samples were collected from the farmland and forestland of Zhangxi watershed, in Ningbo, eastern China during spring, summer, fall and winter four seasons. UV–visible absorption and fluorescent spectroscopy were used to explore the optical characteristics of DOM. The results indicated a mixture of exogenous and autogenous sources of DOM in the Zhangxi watershed, while DOM in farmland exhibited a higher degree of aromaticity and humification than that in forestland. Fluorescent results showed that humic acid-like, fulvic acid-like and microbial-derived humic-like fractions were mostly affected by seasons. The distribution of heavy metals was affected mainly by land-use changes and seasons. Correlation analysis between heavy metals and DOM characteristics and components suggested that aromatic and humic substances were more favorable in binding with EDTA extractable Ni, Cu, Zn and Cd. The bioavailable Cd and Pb decreased due to binding with humic fractions, indicating its great effects on the bioavailability of Cd and Pb. Overall, these findings provide an insight into the correlative distributions of DOM and heavy metals in peri-urban areas, thereby highlighting their biogeochemical cycling in the soil environment.
Показать больше [+] Меньше [-]