Уточнить поиск
Результаты 1-10 из 94
Deperissement des forets en Suisse: etat de situation, analyse des causes, projections.
1985
Schuetz J.P.
Assessment of ozone air pollution injuries on forest vegetation in the Transalpine region of Lombardy (Italy) and Canton Ticino (Switzerland)
2002
Ballarin-Denti, A. (Universita Cattolica di Brescia, Brescia (Italy). Dip. Matematica e Fisica) | Bussotti, F. | Cozzi, A. | Krauchi, N. | Gerosa, G. | Schaub, M. | Skelly, J. M. | Tagliaferri, A.
Many previous studies evidenced very high levels of air pollution by ozone between the North Italy (Lombardy) and the Southern Switzerland (Canton Ticino). These levels are mostly attributed to the influence of the large urbanized area of Milan and to the urban and industrial settlements in the Po Valley. Recent researches revealed the existence of spread foliar ozone-like symptoms in many native plant species, both in the Swiss and in Italian sector. Experiments carried out in open top chambers in Canton Ticino allowed us to attribute the foliar symptoms to the ambient air pollution levels
Показать больше [+] Меньше [-]Soil acidification in Swiss forest ecosystems
2002
Braun, S. (Institute for Applied Plant Biology, Schonenbuch, (Switzerland)) | Kurz, D. | Fluckiger, W.
Soil water measurements in Swiss forest plots show a decrease of the ratio between base cations and aluminium within last 4 years. The decrease is significant in at least one soil layer in 12 of 14 plots and is strongest in areas with high acid deposition. In some of the soils the critical ratio of 1 is being reached today. The development is compared with model estimates. In Switzerland, 80% of acid deposition is made up by nitrogen compounds
Показать больше [+] Меньше [-]Modelling local nanobiomaterial release and concentration hotspots in the environment Полный текст
2021
Hauser, Marina | Nowack, Bernd
Nanobiomaterials (NBMs) are a special category of nanomaterials used in medicine. As applications of NBMs are very similar to pharmaceuticals, their environmental release patterns are likely similar as well. Different pharmaceuticals were detected in surface waters all over the world. Consequently, there exists a need to identify possible NBM exposure routes into the environment. As the application of many NBMs is only carried out at specific locations (hospitals), average predicted environmental concentrations (PECs) may not accurately represent their release to the environment. We estimated the local release of poly(lactic-co-glycolic acid) (PLGA), which is investigated for their use in drug delivery, to Swiss surface waters by using population data as well as type, size and location of hospitals as proxies. The total mean consumption of PGLA in Switzerland using an explorative full-market penetration scenario was calculated to be 770 kg/year. 105 hospitals were considered, which were connected to wastewater treatment plants and the receiving water body using graphic information system (GIS) modelling. The water body dataset contained 20,167 river segments and 210 lake polygons. Using the discharge of the river, we were able to calculate the PECs in different river segments. While we calculated high PLGA releases of 2.24 and 2.03 kg/year in large cities such as Geneva or Zurich, the resulting local PECs of 220 and 660 pg/l, respectively, were low due to the high river discharge (330 and 97 m³/s). High PLGA concentrations (up to 7,900 pg/l) on the other hand were calculated around smaller cities with local hospitals but also smaller receiving rivers (between 0.7 and 1.9 m³/s). Therefore, we conclude that population density does not accurately predict local concentration hotspots of NBMs, such as PLGA, that are administered in a hospital context. In addition, even at the locations with the highest predicted PLGA concentrations, the expected risk is low.
Показать больше [+] Меньше [-]Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake Полный текст
2021
Cossart, Thibaut | Garcia-Calleja, Javier | Worms, Isabelle A.M. | Tessier, Emmanuel | Kavanagh, Killian | Pedrero, Zoyne | Amouroux, David | Slaveykova, Vera I.
The present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups with size between 0.2 and 20 μm. Species-specific enriched isotope mixture of ¹⁹⁹iHg and ²⁰¹MMHg was used to explore the accumulation, the subcellular distribution and transformations occurring in natural pico-nanoplankton sampled at 2 different depths (6.6 m and 8.3 m). Cyanobacteria, diatoms, cryptophyta, green algae and heterotrophic microorganisms were identified as the major groups of pico-nanoplankton with diatoms prevailing at deeper samples. Results showed that pico-nanoplankton accumulated both iHg and MMHg preferentially in the cell membrane/organelles, despite observed losses. The ratios between the iHg and MMHg concentrations measured in the membrane/organelles and cytosol were comparable for iHg and MMHg. Pico-nanoplankton demethylate added ²⁰¹MMHg (~4 and 12% per day depending on cellular compartment), although the involved pathways are to further explore. Comparison of the concentrations of ²⁰¹iHg formed from ²⁰¹MMHg demethylation in whole system, medium and whole cells showed that 82% of the demethylation was biologically mediated by pico-nanoplankton. No significant methylation of iHg by pico-nanoplankton was observed. The accumulation of iHg and MMHg and the percentage of demethylated MMHg correlated positively with the relative abundance of diatoms and heterotrophic microorganisms in the pico-nanoplankton, the concentrations of TN, Mg²⁺, NO₃⁻, NO₂⁻, NH₄⁺ and negatively with the concentrations of DOC, K⁺, Na⁺, Ca²⁺, SO₄²⁻. Taken together the results of the present field study confirm the role of pico-nanoplankton in Hg bioaccumulation and demethylation, however further research is needed to better understand the underlying mechanisms and interconnection between heterotrophic and autotrophic microorganisms.
Показать больше [+] Меньше [-]Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors Полный текст
2019
Osterwalder, Stefan | Huang, Jen-How | Shetaya, Waleed H. | Agnan, Yannick | Frossard, Aline | Frey, Beat | Alewell, Christine | Kretzschmar, Ruben | Biester, Harald | Obrist, Daniel
The Minamata Convention entered into force in 2017 with the aim to phase-out the use of mercury (Hg) in manufacturing processes such as the chlor-alkali or vinyl chloride monomer production. However, past industrial use of Hg had already resulted in extensive soil pollution, which poses a potential environmental threat. We investigated the emission of gaseous elemental mercury (Hg0) from Hg polluted soils in settlement areas in the canton of Valais, Switzerland, and its impact on local air Hg concentrations. Most soil Hg was found as soil matrix-bound divalent Hg (HgII). Elemental mercury (Hg0) was undetectable in soils, yet we observed substantial Hg0 emission (20–1392 ng m−2 h−1) from 27 soil plots contaminated with Hg (0.2–390 mg Hg kg−1). The emissions of Hg0 were calculated for 1274 parcels covering an area of 8.6 km2 of which 12% exceeded the Swiss soil remediation threshold of 2 mg Hg kg−1. The annual Hg0 emission from this area was approximately 6 kg a−1, which is almost 1% of the total atmospheric Hg emissions in Switzerland based on emission inventory estimates. Our results show a higher abundance of Hg resistance genes (merA) in soil microbial communities with increasing soil Hg concentrations, indicating that biotic reduction of HgII is likely an important pathway to form volatile Hg0 in these soils. The total soil Hg pool in the top 20 cm of the investigated area was 4288 kg; hence, if not remediated, these contaminated soils remain a long-term source of atmospheric Hg, which is prone to long-range atmospheric transport.
Показать больше [+] Меньше [-]HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue Полный текст
2019
Vijgen, John | de Borst, Bram | Weber, Roland | Stobiecki, Tomasz | Forter, Martin
During the last 70 years 1, 2, 3, 4, 5, 6-Hexachlorocyclohexane (HCH) has been one of the most extensively used pesticides. Only the gamma-isomer has insecticidal properties. For the marketing of gamma-HCH (lindane) the other 85% HCH isomers which are formed as by-products during HCH production had to be separated and became finally hazardous waste. For each tonne of lindane 8–12 tonnes of waste HCH isomers were produced and production of the approximately 600,000 t of lindane has therefore generated 4.8 to 7.2 million tonnes of HCH/POPs waste. These waste isomers were mostly buried in uncontrolled dumps at many sites around the world. The stockpiles and the large contaminated sites can be categorized as “mega-sites”. Countries with HCH legacy problems include Albania, Argentina, Austria, Azerbaijan, Brazil, China, Croatia, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Russia, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, Ukraine and the USA.As lindane and alpha- and beta-HCH have been listed as POPs in the Stockholm Convention since August 2010, the problem of stockpiles of HCH waste is now documented and globally acknowledged.This article describes briefly the legacy of HCH and lindane that has been created. Three of the mega-sites are being discussed and demonstrate the increase in pollution footprint over time. Recent developments in the EU (including the Sabinanigo project in Aragon/Spain) and on a global level are presented. A short overview is given on lack of activities and on actions of countries within their obligations as Parties of the Stockholm Convention. Furthermore, current country activities supported by the Global Environment Facility (GEF), the “financing mechanism” of the convention, are listed. Finally, conclusions and recommendations are formulated that will contribute to the solution of this problem over the next 25 years.
Показать больше [+] Меньше [-]Accumulation of cadmium and uranium in arable soils in Switzerland Полный текст
2017
Bigalke, Moritz | Ulrich, Andrea | Rehmus, Agnes | Keller, Armin
Mineral phosphorus (P) fertilizers contain contaminants that are potentially hazardous to humans and the environment. Frequent mineral P fertilizer applications can cause heavy metals to accumulate and reach undesirable concentrations in agricultural soils. There is particular concern about Cadmium (Cd) and Uranium (U) accumulation because these metals are toxic and can endanger soil fertility, leach into groundwater, and be taken up by crops. We determined total Cd and U concentrations in more than 400 topsoil and subsoil samples obtained from 216 agricultural sites across Switzerland. We also investigated temporal changes in Cd and U concentrations since 1985 in soil at six selected Swiss national soil monitoring network sites. The mean U concentrations were 16% higher in arable topsoil than in grassland topsoil. The Cd concentrations in arable and grassland soils did not differ, which we attribute to soil management practices and Cd sources other than mineral P fertilizers masking Cd inputs from mineral P fertilizers. The mean Cd and U concentrations were 58% and 9% higher, respectively, in arable topsoil than in arable subsoil, indicating that significant Cd and U inputs to arable soils occurred in the past. Geochemical mass balances confirmed this, indicating an accumulation of 52% for Cd and 6% for U. Only minor temporal changes were found in the Cd concentrations in topsoil from the six soil-monitoring sites, but U concentrations in topsoil from three sites had significantly increased since 1985. Sewage sludge and atmospheric deposition were previously important sources of Cd to agricultural soils, but today mineral P fertilizers are the dominant sources of Cd and U. Future Cd and U inputs to agricultural soils may be reduced by using optimized management practices, establishing U threshold values for mineral P fertilizers and soils, effectively enforcing threshold values, and developing and using clean recycled P fertilizers.
Показать больше [+] Меньше [-]Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe Полный текст
2014
Harmens, Harry | Schnyder, Elvira | Thöni, Lotti | Cooper, David M. | Mills, Gina | Leblond, Sébastien | Mohr, Karsten | Poikolainen, Jarmo | Santamaria, Jesus | Skudnik, Mitja | Zechmeister, Harald G. | Lindroos, Antti-Jussi | Hanus-Illnar, Andrea
Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe Полный текст
2014
Harmens, Harry | Schnyder, Elvira | Thöni, Lotti | Cooper, David M. | Mills, Gina | Leblond, Sébastien | Mohr, Karsten | Poikolainen, Jarmo | Santamaria, Jesus | Skudnik, Mitja | Zechmeister, Harald G. | Lindroos, Antti-Jussi | Hanus-Illnar, Andrea
To assess the relationship between nitrogen concentrations in mosses and wet bulk nitrogen deposition or concentrations in precipitation, moss tissue and deposition were sampled within a distance of 1 km of each other in seven European countries. Relationships for various forms of nitrogen appeared to be asymptotic, with data for different countries being positioned at different locations along the asymptotic relationship and saturation occurring at a wet bulk nitrogen deposition of ca. 20 kg N ha−1 yr−1. The asymptotic behaviour was more pronounced for ammonium-N than nitrate-N, with high ammonium deposition at German sites being most influential in providing evidence of the asymptotic behaviour. Within countries, relationships were only significant for Finland and Switzerland and were more or less linear. The results confirm previous relationships described for modelled total deposition. Nitrogen concentration in mosses can be applied to identify areas at risk of high nitrogen deposition at European scale.
Показать больше [+] Меньше [-]Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe Полный текст
2014
Harmens, H. | Schnyder, E. | Thöni, L. | Cooper, D.M. | Mills, G. | Leblond, S. | Mohr, K. | Poikolainen, J. | Santamaria, J. | Skudnik, M. | Zechmeister, H.G. | Lindroos, A-J. | Hanus-Illnar, A. | Metsäntutkimuslaitos
Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas – Characterization by multivariate analysis Полный текст
2014
Foan, L. | Leblond, S. | Thöni, L. | Raynaud, C. | Santamaría, J.M. | Sebilo, M. | Simon, V.
Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas – Characterization by multivariate analysis Полный текст
2014
Foan, L. | Leblond, S. | Thöni, L. | Raynaud, C. | Santamaría, J.M. | Sebilo, M. | Simon, V.
Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100–700 ng g−1, as well as δ13C values of −32 to −29‰ and δ15N values of −11 to −3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4–6 aromatic rings) content and δ13C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain.
Показать больше [+] Меньше [-]Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas - Characterization by multivariate analysis Полный текст
2014
Foan, Louise | Leblond, Sébastien | Thöni, Lotti | Raynaud, Christine | Santamaria, Jesus Miguel | Sebilo, Mathieu | Simon, Valérie
Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g-1, as well as δ13C values of -32 to -29‰ and δ15N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ13C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain.
Показать больше [+] Меньше [-]Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas - Characterization by multivariate analysis Полный текст
2014
Foan, Louise | Leblond, Sébastien | Thöni, Lotti | Raynaud, Christine | Santamaria, Jesus Miguel | Sebilo, Mathieu | Simon, Valérie | Chimie Agro-Industrielle (CAI) ; Institut National de la Recherche Agronomique (INRA)-Ecole nationale supérieure des ingénieurs en arts chimiques et technologiques (ENSIACET) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Origine, structure et évolution de la biodiversité (OSEB) ; Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS) | FUB - Research Group for Environmental Monitoring (SWITZERLAND) ; FUB - Research Group for Environmental Monitoring (SWITZERLAND) | Laboratorio Integrado de Calidad Ambiental - LICA (Pamplona, Spain) ; Universidad de Navarra [Pamplona] (UNAV) | Biogéochimie et écologie des milieux continentaux (Bioemco) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS) | France by the Agence de l'Environnement et de la Maitrise de l'Energie (ADEME) ; Spain by the Foundation of the University of Navarra (FUNA) ; CAN Foundation ; Switzerland by the Federal Office for the Environment (FOEN) ;Communaute de Travail des Pyrenees/Communidad de Trabajo de los Pirineos (CTP)
International audience | Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g-1, as well as δ13C values of -32 to -29‰ and δ15N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ13C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain.
Показать больше [+] Меньше [-]