Уточнить поиск
Результаты 1-10 из 12
Earthworm cast production as a new behavioural biomarker for toxicity testing.
2010
Capowiez , Yvan (INRA , Avignon (France). UR 1115 Unité de recherche Plantes et Systèmes de Culture Horticoles) | Dittbrenner , Nils (INRA , Avignon (France). UR 1115 Unité de recherche Plantes et Systèmes de Culture Horticoles) | Rault-Léonardon , Magali (INRA , Avignon (France). UMR 0406 Abeilles et Environnement) | Triebskorn , Rita (Eberhard Karls University of Tübingen(Allemagne).) | Hedde , Mickaël (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Mazzia , Christophe (INRA , Avignon (France). UMR 0406 Abeilles et Environnement)
There is currently a lack of ecotoxicity tests adapted to earthworm species of higher ecological relevance and whose endpoints could be directly related to their ecological role in the soil. We propose a new and relatively simple ecotoxicity test based on the estimation of cast production (CP) by Lumbricus terrestris under laboratory conditions. CP was found to be linearly correlated to earthworm biomass and to be greatly influenced by soil water content. Azinphos-methyl had no effect on CP at all the concentrations tested. Significant decreases were observed at the normal application rate for other pesticides with (imidacloprid, carbaryl, methomyl) or without (ethyl-parathion and chlorpyrifos-ethyl) a clear concentration–effect response. For the highest concentration tested, reduction in CP varied between 35 and 67%. CP is straightforward and rapidly measured and ecologically meaningful. We thus believe it to be of great use as an endpoint in ecotoxicity testing.
Показать больше [+] Меньше [-]Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments
1998
Echevarria, Guillaume | Morera, M.T. | Mazkiaran, C. | Garrido, J.J. | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Universidad Pública de Navarra [Espagne] = Public University of Navarra (UPNA)
Competing ions strongly affect heavy metal sorption onto the solid surfaces of soil. This study evaluated competitive sorption of Cd, Cu, Ni, Pb and Zn on three soils: Calcixerollic Xerochrept, Paralithic Xerorthent and Lithic Haplumbrept. Monometal and competitive sorption isotherms were obtained at 25°C. The individual effect of ions on retention of the others was ascertained by a fractional factorial analysis design. Most of the sorption isotherms belonged to type L subtype 2 in the classification of Giles. In competitive sorption the initial linear part was shorter and the knee sharper when compared with monometal sorption isotherms. Parameters related to sorptive capacity, such as Point B, Langmuir monolayer and Freundlich distribution coefficient, were higher in monometal than in competitive sorption, and in basic soils than in acidic soil. Calcium desorbed at different points of the sorption isotherms indicated that cationic exchange with Ca was the main retention mechanism in calcareous soils. For Pb, the ratio Ca desorbed/Pb sorbed was close to one; for Cu, Ni and Zn the ratio ranged from 1.20 to 1.37, probably due to partial dissolution of calcium carbonates by hydrolytic processes during retention. On the other hand, Cd had a ratio around 0.6 reflecting another additional retention mechanism, probably surface complexation. Fractional factorial design confirmed that the presence of the cations investigated reduced the amount of the five metals retained, but the presence of Cu and Pb in the system depressed Ni, Cd and Zn sorption more than the inverse. Cation mobility was enhanced when equilibrium concentration increased and the effect was higher in Ca-saturated soils.
Показать больше [+] Меньше [-]Effect of excess selenium on dromedary camel in the United Arab Emirates
2008
Seboussi, Rabiha | Al-Hadrami, Ghaleb | Askar, Mustapha | Faye, Bernard
Early interest in selenium by nutritionists was first identified in the 1930 s as a toxic element, nowadays it is known to be important in livestock and human diet. Its poisonous nature arouses the curiosity of researchers to investigate the impact of this element in human and animal metabolism. However, selenium has become the center of attention due to its physiological functions explained on the basis of its role as an active component of the enzyme glutathione peroxidase (GSH-PX), which is responsible for the animal antioxidant defense by destruction of hydrogen peroxide and lipid peroxides. Selenium metabolism and toxicity has been consistently studied in different species but data investigations on camelidae species are very limited. Our current study is configured to investigate the selenium intolerance in dromedary camel and carry out the symptoms related to continuous selenium supplementation. Investigations showed that camel is potentially sensitive to selenium excess. Several symptoms revealed by their different intensity from 3 batches, resumed in alopecia - abnormal movement and posture, breathing difficulties, prostration, diarrhea, lost of weight and nervous alteration. (Résumé d'auteur)
Показать больше [+] Меньше [-][Residues of pesticides and their impacts on general health]
2002
Tawil,M.Z.
Earthworm cast production as a new behavioural biomarker for toxicity testing.
2010
Capowiez, Yvan | Dittbrenner, Nils | Rault-Léonardon, Magali | Triebskorn, Rita | Hedde, Mickaël | Mazzia, Christophe
There is currently a lack of ecotoxicity tests adapted to earthworm species of higher ecological relevance and whose endpoints could be directly related to their ecological role in the soil. We propose a new and relatively simple ecotoxicity test based on the estimation of cast production (CP) by Lumbricus terrestris under laboratory conditions. CP was found to be linearly correlated to earthworm biomass and to be greatly influenced by soil water content. Azinphos-methyl had no effect on CP at all the concentrations tested. Significant decreases were observed at the normal application rate for other pesticides with (imidacloprid, carbaryl, methomyl) or without (ethyl-parathion and chlorpyrifos-ethyl) a clear concentration–effect response. For the highest concentration tested, reduction in CP varied between 35 and 67%. CP is straightforward and rapidly measured and ecologically meaningful. We thus believe it to be of great use as an endpoint in ecotoxicity testing.
Показать больше [+] Меньше [-]Testoks (version 1.0) - software for the toxicity tests data analysis
2003
Teodorovic, I. (Univerzitet u Novom Sadu, Novi Sad (Serbia and Montenegro). Prirodno-matematicki fakultet, Departman za biologiju i ekologiju)
TesToks, version 1.0 is the specialized software developed for the toxicity tests data analysis. The paper presents, in short, the options and the constrains of the software.
Показать больше [+] Меньше [-]Effects of neonicotinoids and fipronil on non-target invertebrates
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Downs, C.A. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | McField, M. | Morrissey, C.A. | Noome, D.A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | Van der Sluijs, Jeroen P. | Van Dyck, H. | Wiemers, M.
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. Thereis a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Показать больше [+] Меньше [-]Effects of neonicotinoids and fipronil on non-target invertebrates
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Downs, C.A. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | McField, M. | Morrissey, C.A. | Noome, D.A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | Van der Sluijs, Jeroen P. | Van Dyck, H. | Wiemers, M.
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. Thereis a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Показать больше [+] Меньше [-]Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays
2014
Perrichon, Prescilla | Le Bihanic, Florane | Bustamante, Paco | Le Menach, Karyn | Budzinski, Hélène | Cachot, Jérôme | Cousin, Xavier
Due to hydrophobic and persistent properties, polycyclic aromatic hydrocarbons (PAHs) have a high capacity to accumulate in sediment. Sediment quality criteria, for the assessment of habitat quality and risk for aquatic life, include understanding the fate and effects of PAHs. In the context of European regulation (REACH and Water Framework Directive), the first objective was to assess the influence of sediment composition on the toxicity of two model PAHs, benzo[a]pyrene and fluoranthene using 10-day zebrafish embryo-larval assay. This procedure was undertaken with an artificial sediment in order to limit natural sediment variability. A suitable sediment composition might be then validated for zebrafish and proposed in a new OECD guideline for chemicals testing. Second, a comparative study of toxicity responses from this exposure protocol was then performed using another OECD species, the Japanese medaka. The potential toxicity of both PAHs was assessed through lethal (e.g., survival, hatching success) and sublethal endpoints (e.g., abnormalities, PMR, and EROD) measured at different developmental stages, adapted to the embryonic development time of both species. Regarding effects observed for both species, a suitable artificial sediment composition for PAH toxicity testing was set at 92.5 % dry weight (dw) silica of 0.2-0.5-mm grain size, 5 % dw kaolin clay without organic matter for zebrafish, and 2.5 % dw blond peat in more only for Japanese medaka. PAH bioavailability and toxicity were highly dependent on the fraction of organic matter in sediment and of the K ow coefficients of the tested compounds. The biological responses observed were also dependent of the species under consideration. Japanese medaka embryos appeared more robust than zebrafish embryos for understanding the toxicity of PAHs following a sediment contact test, due to the longer exposure duration and lower sensitivity of sediment physical properties.
Показать больше [+] Меньше [-]Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays
2014
Perrichon, Prescilla | Le Bihanic, Florane | Bustamante, Paco | Le Menach, Karyn | Budzinski, Hélène | Cachot, Jérôme | Cousin, Xavier
Due to hydrophobic and persistent properties, polycyclic aromatic hydrocarbons (PAHs) have a high capacity to accumulate in sediment. Sediment quality criteria, for the assessment of habitat quality and risk for aquatic life, include understanding the fate and effects of PAHs. In the context of European regulation (REACH and Water Framework Directive), the first objective was to assess the influence of sediment composition on the toxicity of two model PAHs, benzo[a]pyrene and fluoranthene using 10-day zebrafish embryo-larval assay. This procedure was undertaken with an artificial sediment in order to limit natural sediment variability. A suitable sediment composition might be then validated for zebrafish and proposed in a new OECD guideline for chemicals testing. Second, a comparative study of toxicity responses from this exposure protocol was then performed using another OECD species, the Japanese medaka. The potential toxicity of both PAHs was assessed through lethal (e.g., survival, hatching success) and sublethal endpoints (e.g., abnormalities, PMR, and EROD) measured at different developmental stages, adapted to the embryonic development time of both species. Regarding effects observed for both species, a suitable artificial sediment composition for PAH toxicity testing was set at 92.5 % dry weight (dw) silica of 0.2-0.5-mm grain size, 5 % dw kaolin clay without organic matter for zebrafish, and 2.5 % dw blond peat in more only for Japanese medaka. PAH bioavailability and toxicity were highly dependent on the fraction of organic matter in sediment and of the K ow coefficients of the tested compounds. The biological responses observed were also dependent of the species under consideration. Japanese medaka embryos appeared more robust than zebrafish embryos for understanding the toxicity of PAHs following a sediment contact test, due to the longer exposure duration and lower sensitivity of sediment physical properties.
Показать больше [+] Меньше [-]