Уточнить поиск
Результаты 1-10 из 89
Environmental co-exposure to TBT and Cd caused neurotoxicity and thyroid endocrine disruption in zebrafish, a three-generation study in a simulated environment
2020
Li, Ping | Li, Zhi-Hua
Although the coexistence of heavy metals and environmental hormones always occur in aquatic environment, the information of the combined impacts remains unclear. To explore the multi-generational toxicity of cadmium (Cd) and tributyltin (TBT), adult zebrafish (Danio rerio) (F0) were exposed to different treated groups (100 ng/l Cd, 100 ng/l TBT and their mixture) for 90 d, with their offspring (F1 and F2) subsequently reared in the same exposure solutions corresponding to their parents. Both developmental neurotoxicity and thyroid disturbances were examined in the three (F0, F1, and F2) generations. Our results showed that co-exposure to Cd and TBT induced the developmental neurotoxicity in F1 and F2 generations, reflected by the significant lower levels of neurotransmitters (dopamine and serotonin) and the inhibited acetylcholinesterase (AChE) activities. And the thyroid endocrine disruption were observed in the two-generations larval offspring by parental exposure to Cd and/or TBT, including the significantly decreasing levels of thyroid hormones and the down-regulated the expression of genes involved in the hypothalamus-pituitary-thyroid axis, compared to the control. Additional, the embryonic toxicity and growth inhibition were also determined in the fish larvae. Overall, this study examined the impacts of parental co-exposure to Cd and TBT, with regard to developmental inhibition, nervous system damage and endocrine disruption, which highlighted that co-exposure influences are complicated and need to be considered for accurate environmental risk assessment.
Показать больше [+] Меньше [-]Cardiotoxicity of environmental contaminant tributyltin involves myocyte oxidative stress and abnormal Ca2+ handling
2019
Pereira, C.L.V. | Ximenes, C.F. | Merlo, E. | Sciortino, A.S. | Monteiro, J.S. | Moreira, A. | Jacobsen, B.B. | Graceli, J.B. | Ginsburg, K.S. | Ribeiro Junior, R.F. | Bers, D.M. | Stefanon, I.
Tributyltin (TBT) is an organotin environmental pollutant widely used as an agricultural and wood biocide and in antifouling paints. Countries began restricting TBT use in the 2000s, but their use continues in some agroindustrial processes. We studied the acute effect of TBT on cardiac function by analyzing myocardial contractility and Ca²⁺ handling. Cardiac contractility was evaluated in isolated papillary muscle and whole heart upon TBT exposure. Isolated ventricular myocytes were used to measure calcium (Ca²⁺) transients, sarcoplasmic reticulum (SR) Ca²⁺ content and SR Ca²⁺ leak (as Ca²⁺ sparks). Reactive oxygen species (ROS), as superoxide anion (O2•⁻) was detected at intracellular and mitochondrial myocardium. TBT depressed cardiac contractility and relaxation in papillary muscle and intact whole heart. TBT increased cytosolic, mitochondrial ROS production and decreased mitochondrial membrane potential. In isolated cardiomyocytes TBT decreased both Ca²⁺ transients and SR Ca²⁺ content and increased diastolic SR Ca²⁺ leak. Decay of twitch and caffeine-induced Ca²⁺ transients were slowed by the presence of TBT. Dantrolene prevented and Tiron limited the reduction in SR Ca²⁺ content and transients. The environmental contaminant TBT causes cardiotoxicity within minutes, and may be considered hazardous to the mammalian heart. TBT acutely induced a negative inotropic effect in isolated papillary muscle and whole heart, increased arrhythmogenic SR Ca²⁺ leak leading to reduced SR Ca²⁺ content and reduced Ca²⁺ transients. TBT-induced myocardial ROS production, may destabilize the SR Ca²⁺ release channel RyR2 and reduce SR Ca²⁺ pump activity as key factors in the TBT-induced negative inotropic and lusitropic effects.
Показать больше [+] Меньше [-]From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama
2018
Batista-Andrade, Jahir Antonio | Caldas, Sergiane Souza | Batista, Rodrigo Moço | Castro, Italo Braga | Fillmann, Gilberto | Primel, Ednei Gilberto
Antifouling biocides in surface sediments and gastropod tissues were assessed for the first time along coastal areas of Panama under the influence of maritime activities, including one of the world's busiest shipping zones: the Panama Canal. Imposex incidence was also evaluated in five muricid species distributed along six coastal areas of Panama. This TBT-related biological alteration was detected in three species, including the first report in Purpura panama. Levels of organotins (TBT, DBT, and MBT) in gastropod tissues and surficial sediments ranged from <5 to 104 ng Sn g⁻¹ and <1–149 ng Sn g⁻¹, respectively. In addition, fresh TBT inputs were observed in areas considered as moderate to highly contaminated mainly by inputs from fishing and leisure boats. Regarding booster biocides, TCMTB and dichlofluanid were not detected in any sample, while irgarol 1051, diuron and DCOIT levels ranged from <0.08 to 2.8 ng g⁻¹, <0.75–14.1 ng g⁻¹, and <0.38–81.6 ng g⁻¹, respectively. The highest level of TBT (149 ng Sn g⁻¹) and irgarol 1051 (2.8 ng g⁻¹), as well as relevant level of DCOIT (5.7 ng g⁻¹), were detected in a marina used by recreational boats. Additionally, relatively high diuron values (14.1 ng g⁻¹) were also detected in the Panama Canal associate to a commercial port. DCOIT concentrations were associated with the presence of antifouling paint particles in sediments obtained nearby shipyard or boat maintenance sites. The highest levels of TBT, irgarol 1051, and diuron exceeded international sediment quality guidelines indicating that toxic effects could be expected in coastal areas of Panama. Thus, the simultaneous impacts produced by new and old generations of antifouling paints highlight a serious environmental issue in Panamanian coastal areas.
Показать больше [+] Меньше [-]A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation
2017
Gorito, Ana M. | Ribeiro, Ana R. | Almeida, C.M.R. | Silva, Adrián M.T.
The presence of organic pollutants in the aquatic environment, usually found at trace concentrations (i.e., between ng L−1 and μg L−1 or even lower, known as micropollutants), has been highlighted in recent decades as a worldwide environmental concern due to their difficult elimination by conventional water and wastewater treatment processes. The relevant information on constructed wetlands (CWs) and their application for the removal of a specific group of pollutants, 41 organic priority substances/classes of substances (PSs) and 8 certain other substances with environmental quality standards (EQS) listed in Directive 2013/39/EU as well as 17 contaminants of emerging concern (CECs) of the Watch List of Decision 2015/495/EU, is herein reviewed. Studies were found for 24 PSs and 2 other substances with EQS: octylphenol, nonylphenol, perfluorooctane sulfonic acid, di(2-ethylhexyl)phthalate, trichloromethane, dichloromethane, 1,2-dichloroethane, pentachlorobenzene, benzene, polychlorinated dibenzo-p-dioxins, naphthalene, fluoranthene, trifluralin, alachlor, isoproturon, diuron, tributyltin compounds, simazine, atrazine, chlorpyrifos (chlorpyrifos-ethyl), chlorfenvinphos, hexachlorobenzene, pentachlorophenol, endosulfan, dichlorodiphenyltrichloroethane (or DDT) and dieldrin. A few reports were also published for 8 CECs: imidacloprid, erythromycin, clarithromycin, azithromycin, diclofenac, estrone, 17-beta-estradiol and 17-alpha-ethinylestradiol. No references were found for the other 17 PSs, 6 certain other substances with EQS and 9 CECs listed in EU legislation.
Показать больше [+] Меньше [-]Effects of the tributyltin on the blood parameters, immune responses and thyroid hormone system in zebrafish
2021
Li, Zhi-Hua | Li, Ping
Tributyltin (TBT) is a widely used organotin compound around the world and was frequently detected in surface waters, which would pose risk to aquatic organisms. However, the mechanisms of TBT-induced toxicity is not full clear. The present study investigated the effects of the tributyltin (TBT) on the blood parameters, immune responses and thyroid hormone system in zebrafish. Fish were exposed to sublethal concentrations of TBT (10 ng/L, 100 ng/L and 300 ng/L) for 6 weeks. The effects of long-term exposure to TBT on blood parameters (NH3, ammonia; GLU, glucose; TP, total proteins; CK, creatine kinase; ALT, alanine aminotransferase; AST, aspartate aminotransferase), immune responses (Lys, lysozyme; IgM, immunoglobulin M) and some indexes related thyroid hormone system (T3, 3,5,3′-triiodothyronine; T4, thyroxine) were measured in zebrafish, as well as the expression of genes related to immune responses and thyroid hormone system. Based on the results, the physiological-biochemical responses was significantly enhanced with an increase in TBT concentration, reflected by the abnormal blood indices, dysregulation of endocrine system and immunotoxicity in zebrafish under TBT stress. The present study greatly extends our understanding of adverse effects of TBT on aquatic organisms.
Показать больше [+] Меньше [-]Impacts of microplastics on organotins’ photodegradation in aquatic environments
2020
Chen, Chunzhao | Chen, Ling | Li, Yang | Fu, Wanyi | Shi, Xiaonan | Duan, Jiajun | Zhang, Wen
Microplastics are ubiquitous in natural waters and affect the environmental fate of hydrophobic organic micropollutants. This study evaluated the impacts of four microplastics, polypropylene (PP), polyethylene (PE), polystyrene (PS) and polymethyl methacrylate (PMMA), on the photodegradation of organotin compounds (OTCs) under UV₃₆₅ irradiation (2.3 ± 0.1 W m⁻²). The experiments were performed by mixing PP, PE, PS or PMMA microparticles with tri-organotins in artificial seawater. The photodegradation of OTCs in microplastic suspensions was influenced by the absorptivity onto microplastics. The decomposition rate of tributyltin (TBT) in UV-irradiated PP suspensions was greater than trimethyltin (TMT) and triphenyltin (TPhT) (p < 0.01). The adsorption capacities of OTCs (e.g., TBT) on PP particle surfaces were significantly lower than those on PE surfaces (p < 0.05) but similar with those on PMMA due to the different surface areas, shapes, and surface hydrophobicity of microplastics. TBT degraded faster (9.1%) in PS than in PMMA suspension (11.2%) within 240 min, respectively. However, only less than 5.4% was photodegraded in PP suspension due to the light scattering or absorption of the large sized PP particles. This study provided new insight into the impacts of microplastics on photodegradation of micropollutants in natural waters.
Показать больше [+] Меньше [-]Gut microbiome alterations induced by tributyltin exposure are associated with increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice
2020
Zhan, Jing | Ma, Xiaoran | Liu, Donghui | Liang, Yiran | Li, Peize | Cui, Jingna | Zhou, Zhiqiang | Wang, Peng
Tributyltin (TBT), an organotin compound once widely used in agriculture and industry, has been reported to induce obesity and endocrine disruption. Gut microbiota has a strong connection with the host’s physiology. Nevertheless, the influences of TBT exposure on gut microbiota and whether TBT-influenced gut microbiota is related to TBT-induced toxicity remain unclear. To fill these gaps, ICR (CD-1) mice were respectively exposed to TBT at NOEL (L-TBT) and tenfold NOEL (H-TBT) daily by gavage for 8 weeks in the current study. The results showed that TBT exposure significantly increased body weight as well as epididymal fat, and led to adipocyte hypertrophy, dyslipidemia and impaired glucose and insulin homeostasis in mice. Additionally, TBT exposure significantly decreased the levels of T4, T3 and testosterone in serum. Also of note, TBT exposure changed gut microbiota composition mainly by decreasing Bacteroidetes and increasing Firmicutes proportions. To confirm the role of gut microbiota in TBT-induced overweight and hormonal disorders, fecal microbiota transplantation was performed and the mice receiving gut microbiota from H-TBT mice had similar phenotypes with their donor mice including significant body weight and epididymal fat gain, glucose and insulin dysbiosis and hormonal disorders. These results suggested that gut microbiome altered by TBT exposure was involved in the TBT-induced increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice, providing significant evidence and a novel perspective for better understanding the mechanism by which TBT induces toxicity.
Показать больше [+] Меньше [-]The Echinodermata PPAR: Functional characterization and exploitation by the model lipid homeostasis regulator tributyltin
2020
Capitão, Ana | Lopes-Marques, Mónica | Páscoa, Inês | Ruivo, Raquel | Mendiratta, Nicolau | Fonseca, Elza | Castro, L. Filipe C. | Santos, Miguel Machado
The wide ecological relevance of lipid homeostasis modulators in the environment has been increasingly acknowledged. Tributyltin (TBT), for instance, was shown to cause lipid modulation, not only in mammals, but also in fish, molluscs, arthropods and rotifers. In vertebrates, TBT is known to interact with a nuclear receptor heterodimer module, formed by the retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR). These modulate the expression of genes involved in lipid homeostasis. In the present work, we isolated for the first time the complete coding region of the Echinodermata (Paracentrotus lividus) gene orthologues of PPAR and RXR and evaluated the ability of a model lipid homeostasis modulator, TBT, to interfere with the lipid metabolism in this species. Our results demonstrate that TBT alters the gonadal fatty acid composition and gene expression patterns: yielding sex-specific responses in fatty acid levels, including the decrease of eicosapentaenoic acid (C20:5 n-3, EPA) in males, and increase of arachidonic acid (20:4n-6, ARA) in females, and upregulation of long-chain acyl-CoA synthetase (acsl), ppar and rxr. Furthermore, an in vitro test using COS-1 cells as host and chimeric receptors with the ligand binding domain (LBD) of P. lividus PPAR and RXR shows that organotins (TBT and TPT (Triphenyltin)) suppressed activity of the heterodimer PPAR/RXR in a concentration-dependent manner. Together, these results suggest that TBT acts as a lipid homeostasis modulator at environmentally relevant concentrations in Echinodermata and highlight a possible conserved mode of action via the PPAR/RXR heterodimer.
Показать больше [+] Меньше [-]Toxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in the marine decapod Litopenaeus vannamei
2019
Su, Yujie | Li, Huifeng | Xie, Jia | Xu, Chang | Dong, Yangfan | Han, Fenglu | Qin, Jian G. | Chen, Liqiao | Li, Erchao
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main component of SeaNine-211, a new antifouling agent that replaces tributyltin to prevent the growth of undesirable organisms on ships. There have been some studies on the toxicity of DCOIT, but the mechanism of DCOIT’s toxicity to crustaceans still requires elucidation. This study examined the chronic toxicity (4 weeks) of 0, 3, 15, and 30 μg/L DCOIT to the Pacific white shrimp (Litopenaeus vannamei) from the aspects of growth and physiological and histological changes in the hepatopancreas and gills. A transcriptomic analysis was performed on the hepatopancreas to reveal the underlying mechanism of DCOIT in shrimp. The exposure to 30 μg/L DCOIT significantly reduced the survival and weight gain of L. vannamei. High Na⁺/K⁺-ATPase activity and melanin deposition were found in the gills after 4 weeks of 15 μg/L or 30 μg/L DCOIT exposure. The highest concentration of DCOIT (30 μg/L) induced changes in hepatopancreatic morphology and metabolism, including high anaerobic respiration and the accumulation of triglycerides. Compared with the exposure to 3 μg/L DCOIT, shrimp exposed to 15 μg/L DCOIT showed more differentially expressed genes (DEGs) than those in the control, and these DEGs were involved in biological processes such as starch and sucrose metabolism and choline metabolism in cancer. The findings of this study indicate that L. vannamei is sensitive to the antifouling agent DCOIT and that DCOIT can induce altered gene expression at a concentration of 15 μg/L and can interfere with shrimp metabolism, growth and survival at 30 μg/L.
Показать больше [+] Меньше [-]Critical analysis of the relationship between imposex and butyltin body burden in Nassarius reticulatus and Nucella lapillus
2018
Rial, D. | Bellas, J. | Ruiz, J.M.
Imposex is a disorder caused by organotins, mainly tributyltin, which results in the appearance of male sexual characteristics in females of gastropod mollusks. The main objective of this work was to make a critical analysis of the relationship between imposex and butyltin body burdens in Nucella lapillus and Nassarius reticulatus. Specifically, this study evaluates possible additive effects among butyltins, proposes scales of effects based on robust statistical criteria as alternatives to existing ones and defines the body burdens of TBT in N. lapillus and N. reticulatus corresponding to the assessment classes (ACs) of the Vas Deferens Sequence Index (VDSI) established by OSPAR. Data of organotin body burdens and biological effects was retrieved from the ICES Dataset and from scientific literature. All responses, except the percentage of females displaying Imposex (IMPF) in Nucella lapillus, showed a sigmoidal profile regarding to the body burden of mono- (MBT), di- (DBT) and tributyltin and sum of butyltins (SumBTs). TBT and the SumBTs were better indicators of the VDSI or Relative Penis Size Index/Relative Penis Length Index (RPSI/RPLI) responses than MBT or DBT in most cases. From a statistical point of view, RPSI/RPLI and VDSI were better indicators of contamination by TBT than IMPF, although both RPSI and RPLI showed lower sensitivity than VDSI. The model used for describing the joint effect of butyltins provided a statistically significant fitting to the data assuming a null effect for both MBT and DBT for N. lapillus, and a lower toxic contribution of MBT and DBT with respect to TBT for N. reticulatus. RPSI or RPLI values, equivalent to the ACs for VDSI, were proposed as alternative criteria when measuring moderate to high levels of imposex. TBT concentrations in N. reticulatus and N. lapillus tissues, corresponding to the ACs were calculated and provided valuable information for cross-species comparisons.
Показать больше [+] Меньше [-]