Уточнить поиск
Результаты 1-10 из 212
Bioaccumulation of per- and polyfluoroalkyl substance in fish from an urban river: Occurrence, patterns and investigation of potential ecological drivers
2022
Macorps, Nicolas | Le Menach, Karyn | Pardon, Patrick | Guérin-Rechdaoui, Sabrina | Rocher, Vincent | Budzinski, Hélène | Labadie, Pierre
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in aquatic environments and a recent shift toward emerging PFAS is calling for new data on their occurrence and fate. In particular, understanding the determinants of their bioaccumulation is fundamental for risk assessment purposes. However, very few studies have addressed the combined influence of potential ecological drivers of PFAS bioaccumulation in fish such as age, sex or trophic ecology. Thus, this work aimed to fill these knowledge gaps by performing a field study in the Seine River basin (France). Composite sediment and fish (European chub, Squalius Cephalus) samples were collected from four sites along a longitudinal transect to investigate the occurrence of 36 PFAS. Sediment molecular patterns were dominated by fluorotelomer sulfonamidoalkyl betaines (i.e. 6:2 and 8:2 FTAB, 46% of ∑PFAS on average), highlighting the non-negligible contribution of PFAS of emerging concern. C₉–C₁₄ perfluoroalkyl carboxylic acids, perfluorooctane sulfonic acid (PFOS), perfluorooctane sulfonamide (FOSA) and 10:2 fluorotelomer sulfonate (10:2 FTSA) were detected in all fish samples. Conversely, 8:2 FTAB was detected in a few fish from the furthest downstream station only, suggesting the low bioaccessibility or the biotransformation of FTABs. ∑PFAS in fish was in the range 0.22–3.8 ng g⁻¹ wet weight (ww) and 11–140 ng g⁻¹ ww for muscle and liver, respectively. Fish collected upstream of Paris were significantly less contaminated than those collected downstream, pointing to urban and industrial inputs. The influence of trophic ecology and biometry on the interindividual variability of PFAS burden in fish was examined through analyses of covariance (ANCOVAs), with sampling site considered as a categorical variable. While the latter was highly significant, diet was also influential; carbon sources and trophic level (i.e. estimated using C and N stable isotope ratios, respectively) equally explained the variability of PFAS levels in fish.
Показать больше [+] Меньше [-]Mercury biomagnification in an Antarctic food web of the Antarctic Peninsula
2022
Matias, Ricardo S. | Guímaro, Hugo R. | Bustamante, Paco | Seco, José | Chipev, N. | Fragão, Joana | Tavares, Sílvia | Ceia, Filipe R. | Pereira, Maria E. | Barbosa, Andrés | Xavier, José C.
Under the climate change context, warming Southern Ocean waters may allow mercury (Hg) to become more bioavailable to the Antarctic marine food web (i.e., ice-stored Hg release and higher methylation rates by microorganisms), whose biomagnification processes are poorly documented. Biomagnification of Hg in the food web of the Antarctic Peninsula, one of the world's fastest-warming regions, was examined using carbon (δ¹³C) and nitrogen (δ¹⁵N) stable isotope ratios for estimating feeding habitat and trophic levels, respectively. The stable isotope signatures and total Hg (T-Hg) concentrations were measured in Antarctic krill Euphausia superba and several Antarctic predator species, including seabirds (gentoo penguins Pygoscelis papua, chinstrap penguins Pygoscelis antarcticus, brown skuas Stercorarius antarcticus, kelp gulls Larus dominicanus, southern giant petrels Macronectes giganteus) and marine mammals (southern elephant seals Mirounga leonina). Significant differences in δ¹³C values among species were noted with a great overlap between seabird species and M. leonina. As expected, significant differences in δ¹⁵N values among species were found due to interspecific variations in diet-related to their trophic position within the marine food web. The lowest Hg concentrations were registered in E. superba (0.007 ± 0.008 μg g⁻¹) and the highest values in M. giganteus (12.090 ± 14.177 μg g⁻¹). Additionally, a significant positive relationship was found between Hg concentrations and trophic levels (reflected by δ¹⁵N values), biomagnifying nearly 2 times its concentrations at each level. Our results support that trophic interaction is the major pathway for Hg biomagnification in Southern Ocean ecosystems and warn about an increase in the effects of Hg on long–lived (and high trophic level) Antarctic predators under climate change in the future.
Показать больше [+] Меньше [-]Perfluoroalkyl acids (PFAAs) in the aquatic food web of a temperate urban lake in East China: Bioaccumulation, biomagnification, and probabilistic human health risk
2022
Chu, Kejian | Lü, Ying | Hua, Zulin | Liu, Yuanyuan | Ma, Yixin | Gu, Li | Gao, Chang | Yu, Liang | Wang, Yifan
The bioaccumulation and biomagnification of perfluoroalkyl acids (PFAAs) in temperate urban lacustrine ecosystems is poorly understood. We investigated the occurrence and trophic transfer of and probabilistic health risk from 15 PFAAs in the food web of Luoma Lake, a temperate urban lake in East China. The target PFAAs were widely distributed in the water (∑PFAA: 77.09 ± 9.07 ng/L), suspended particulate matter (SPM) (∑PFAA: 284.07 ± 118.05 ng/g dw), and sediment samples (∑PFAA: 67.77 ± 17.96 ng/g dw) and occurred in all biotic samples (∑PFAA: 443.27 ± 124.89 ng/g dw for aquatic plants; 294.99 ± 90.82 for aquatic animals). PFBA was predominant in water and SPM, with 40.11% and 21.35% of the total PFAAs, respectively, while PFOS was the most abundant in sediments (14.11% of the total PFAAs) and organisms (14.33% of the total PFAAs). Sediment exposure may be the major route of biological uptake of PFAAs. The PFAA accumulation capacity was the highest in submerged plants, followed by emergent plants > bivalves > crustaceans > fish > floating plants. Long-chain PFAAs were biomagnified, and short-chain PFAAs were biodiluted across the entire lacustrine food web. PFOS exhibited the greatest bioaccumulation and biomagnification potential among the target PFAAs. However, biomagnification of short-chain PFAAs was also observed within the low trophic-level part of the food web. Human health risk assessment indicated that perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) posed health risks to all age groups, while the other PFAAs were unlikely to cause immediate harm to consumers in the region. This study fills a gap in the knowledge of the transfer of PFAAs in the food webs of temperate urban lakes.
Показать больше [+] Меньше [-]Eutrophic levels and algae growth increase emissions of methane and volatile sulfur compounds from lakes
2022
Wang, Jing | Wei, Zhi-Peng | Chu, Yi-Xuan | Tian, Guangming | He, Ruo
Eutrophic lakes are hot spots of CH₄ and volatile sulfur compound (VSC) emissions, especially during algal blooms and decay. However, the response of CH₄ and VSC emissions to lake eutrophication and algae growth as well as the underlying mechanisms remain unclear. In this study, the emissions of CH₄ and VSCs from four regions of Lake Taihu with different eutrophic levels were investigated in four months (i.e., March, May, August and December). The CH₄ emissions ranged from 20.4 to 126.9 mg m⁻² d⁻¹ in the investigated sites and increased with eutrophic levels and temperature. H₂S and CS₂ were the dominant volatile sulfur compounds (VSCs) emitted from the lake. The CH₄ oxidation potential of water ranged from 2.1 to 14.9 μg h⁻¹ L⁻¹, which had positive correlations with trophic level index and the environmental variables except for the NH₄⁺-N concentration. Eutrophic levels could increase the abundances of bacteria and methanotrophs in lake water. α-Proteobacteria methanotroph Methylocystis was more abundant than γ-Proteobacteria methanotrophs in March and May, while the latter was more abundant in August and November. The relative abundance of Cyanobacteria, including Microcystis, A. granulata var. angustissima and Cyanobium had significantly positive correlations with temperature, turbidity, SO₄²⁻-S, and total sulfur. Partial least squares path modelling revealed that the algal growth could promote VSC emissions, which had a positive correlation with CH₄ oxidation potential, likely due to the positive correlation between the CH₄ and VSC emissions from lakes. These findings indicate that water eutrophication and algae growth could increase the emissions of CH₄ and VSCs from lakes. Controlling algae growth might be an effective way to mitigate the emissions of CH₄ and VSCs from freshwater lakes.
Показать больше [+] Меньше [-]Phenolic compounds seasonal occurrence and risk assessment in surface and treated waters in Minas Gerais—Brazil
2021
Ramos, Ramatisa L. | Moreira, Victor R. | Lebron, Yuri A.R. | Santos, Amanda V. | Santos, Lucilaine V.S. | Amaral, Míriam C.S.
This study provided a monitoring of phenolic compounds occurrence in a river and in its treated water by a conventional water treatment plant (WTP) throughout a year-period, in Minas Gerais - Brazil. Furthermore, the environmental risk (hazard quotient - HQ), the human health risk (margin of exposure - MOE), and the cancer risk were calculated for the compounds. The results indicated that sixteen out of the seventeen investigated phenolic compounds were detected at some point during the sampling campaign. The most frequent compounds in the raw surface water were 2,3,4–trichlorophenol (234TCP), 2,4–dimethylphenol (24DMP), and 4–nitrophenol (4NP), whereas in treated water were 4NP and bisphenol A (BPA). In addition, the highest total concentration values were corelated to the months in which there was less precipitation, demonstrating that the presence of this micropollutants may be subject to seasonality. From the treated water results, it was not possible to state the efficiency of the conventional WTP in eliminating the phenols, since in some samples the phenolic compounds were totally removed and in others their increase or formation occurred. Regarding to the risk assessments, most of the evaluated compounds were considered highly toxic to some trophic level and posed a significant human health risk. Additionally, the risk reduction of phenolics using conventional WTP was low.The sixteen phenols contamination in surface and drinking waters appears to be subject to seasonality. Besides that, an alarming risk for environment and human health was identified.
Показать больше [+] Меньше [-]Mercury biomagnification in a Southern Ocean food web
2021
Seco, José | Aparício, Sara | Brierley, Andrew S. | Bustamante, Paco | Ceia, Filipe R. | Coelho, João P. | Philips, Richard A. | Saunders, Ryan A. | Fielding, Sophie | Gregory, Susan | Matias, Ricardo | Pardal, Miguel A. | Pereira, Eduarda | Stowasser, Gabriele | Tarling, Geraint A. | Xavier, José C.
Biomagnification of mercury (Hg) in the Scotia Sea food web of the Southern Ocean was examined using the stable isotope ratios of nitrogen (δ¹⁵N) and carbon (δ¹³C) as proxies for trophic level and feeding habitat, respectively. Total Hg and stable isotopes were measured in samples of particulate organic matter (POM), zooplankton, squid, myctophid fish, notothenioid fish and seabird tissues collected in two years (austral summers 2007/08 and 2016/17). Overall, there was extensive overlap in δ¹³C values across taxonomic groups suggesting similarities in habitats, with the exception of the seabirds, which showed some differences, possibly due to the type of tissue analysed (feathers instead of muscle). δ¹⁵N showed increasing enrichment across groups in the order POM to zooplankton to squid to myctophid fish to notothenioid fish to seabirds. There were significant differences in δ¹⁵N and δ¹³C values among species within taxonomic groups, reflecting inter-specific variation in diet. Hg concentrations increased with trophic level, with the lowest values in POM (0.0005 ± 0.0002 μg g⁻¹ dw) and highest values in seabirds (3.88 ± 2.41 μg g⁻¹ in chicks of brown skuas Stercorarius antarcticus). Hg concentrations tended to be lower in 2016/17 than in 2007/08 for mid-trophic level species (squid and fish), but the opposite was found for top predators (i.e. seabirds), which had higher levels in the 2016/17 samples. This may reflect an interannual shift in the Scotia Sea marine food web, caused by the reduced availability of a key prey species, Antarctic krill Euphausia superba. In 2016/17, seabirds would have been forced to feed on higher trophic-level prey, such as myctophids, that have higher Hg burdens. These results suggest that changes in the food web are likely to affect the pathway of mercury to Southern Ocean top predators.
Показать больше [+] Меньше [-]Influence of overwinter distribution on exposure to persistent organic pollutants (POPs) in seabirds, ancient murrelets (Synthliboramphus antiquus), breeding on the Pacific coast of Canada
2020
Miller, Aroha | Elliott, John E. | Wilson, Laurie K. | Elliott, Kyle H. | Drouillard, Ken G. | Verreault, Jonathan | Lee, Sandi | Idrissi, Abde
Assessing the fate of both legacy and newer persistent organic pollutants (POPs) is an ongoing challenge. Top predators, including seabirds, are effective monitors of POPs because they forage over a range of marine habitats, integrating signals over space and time. However, migration patterns can make unravelling contaminant sources, and potentially assessments of the effectiveness of regulations, challenging if chemicals are acquired at distant sites. In 2014, we fitted geolocators on ancient murrelets (Synthliboramphus antiqueus) at four colonies on the Pacific Coast of Canada to obtain movement data throughout an annual cycle. All birds underwent a post-breeding moult in the Bering Sea. Around one-third then returned to overwinter on the British Columbia (BC) coast while the rest migrated to overwinter in waters along the north Asian coast. Such a stark difference in migration destination provided an opportunity to examine the influence of wintering location on contaminant signals. In summer 2015, we collected blood samples from returned geo-tagged birds and analyzed them for a suite of contaminants, including polybrominated diphenyl ethers (PBDEs), non-PBDE halogenated flame retardants, perfluoroalkyl substances (PFASs), organochlorines, and mercury. Feathers were also collected and analyzed for stable isotopes (δ¹³C, δ¹⁵N, and δ³⁴S). We found no significant differences in blood concentrations of any contaminant between murrelets from the two different overwinter areas, a result that indicates relatively rapid clearance of POPs accumulated during winter. Spatial variation in diet (i.e., δ¹³C) was associated with both BDE-47 and -99 concentrations. However, individual variation in trophic level had little influence on concentrations of any other examined contaminants. Thus, blood from these murrelets is a good indicator of recent, local contaminants, as most signals appear independent of overwintering location.
Показать больше [+] Меньше [-]Interactive effects of earthworm Eisenia fetida and bean plant Phaseolus vulgaris L on the fate of soil selenium
2020
Azhar-u-ddin, | Huang, Jung-Chen | Gan, Xinyu | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals with a narrow margin between essentiality and toxicity. Se toxicity is largely related to inorganic forms of Se in soil, i.e., selenite and selenate that enter food chains through plant uptake, threatening higher trophic level organisms. This experiment investigated effects of earthworm activity on Se bioavailability in soil and the subsequent plant uptake, using earthworm Eisenia fetida and bean plant Phaseolus vulgaris L, both exposed to either selenite or selenate at 1 or 4 mg Se kg⁻¹ for 16 weeks. Plants took up selenate (up to 221-fold) faster than selenite, with up to 84% of the Se rapidly transported to shoots. In the presence of earthworms, Se accumulation obviously increased for selenate-supplied plants, leading to an up to 4% increase in Se translocation factor for all treatments except for 1 mg kg⁻¹ selenite treatment. Earthworms also concentrated Se faster in tissues (up to 274 mg kg⁻¹ DW) at exposure to selenate. For Se toxicity, Se speciation analysis was conducted on the plants and earthworms using XAS. Compared to worm-free treatments, the percentage of organo-Se, i.e., SeMet and CysSeSeCys, increased in beans (up to 34%) in the presence of earthworms for selenate, while the elemental Se portion was significantly reduced or absent, opposite to the results for selenite. Surprisingly, elemental Se (up to 65%) dominated earthworms, regardless of the form of Se supplied. In conclusion, earthworms clearly enhanced Se uptake and translocation in plants, leading to elevated Se levels in shoots. To prevent resulting hazards to humans and other animals, caution should be taken while consuming the shoots, particularly beans, harvested from the Se contaminated soil where earthworm activity is high. Finally, the significant reduction in soil Se suggests phytoextraction of Se from the soil could be improved using earthworms as an aid to plants.
Показать больше [+] Меньше [-]Patterns of mercury exposure and relationships with isotopes and markers of oxidative status in chicks of a Mediterranean seabird
2020
Costantini, David | Bustamante, Paco | Brault-Favrou, Maud | Dell’Omo, Giacomo
The Mediterranean basin is a hotspot of mercury (Hg) contamination owing to intense anthropogenic emissions, volcanic activity and oligotrophic conditions. Little work has been done to assess the sources of Hg exposure for seabirds and, particularly, the physiological consequences of Hg bioaccumulation. In this study, we (i) describe the individual and temporal variation in blood concentration of total Hg (THg) over three breeding seasons, (ii) identify the factors that affect the THg exposure and (iii) determine the individual- and population-level connections between THg and blood-based markers of oxidative status in chicks of Scopoli’s shearwaters (Calonectris diomedea) breeding on the island of Linosa in the southern Mediterranean. We carried out the work on chicks near fledging because they are fed with prey captured near the colony, thus their Hg levels reflect local contamination. The concentration of THg in erythrocytes varied from 0.23 to 4.29 μg g⁻¹ dw. Chicks that were fed upon higher trophic level prey (i.e., higher δ¹⁵N values) had higher THg levels. Individual variation in THg concentrations was not explained by parental identity, sex nor δ¹³C values. There was significant variation in THg among chicks born from the same mother in different years. We found significant correlations between THg and markers of oxidative status; however, these correlations were no longer significant when we took into account the annual variation in mean values of all metrics. Males with higher values of body condition index had higher blood THg, while THg and body condition index were not correlated in females. Our data indicate that THg levels were moderate to high if compared to other seabirds. However, there is little evidence for harmful short-term detrimental effects owing to THg exposure.
Показать больше [+] Меньше [-]Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific
2020
Palacios-Torres, Yuber | de la Rosa, Jesus D. | Olivero-Verbel, Jesus
The Atrato watershed is a rainforest that supports exceptional wildlife species and is considered one of the most biodiversity-rich areas on the planet, currently threatened by massive gold mining. Aimed to protect this natural resource, the Constitutional Court of Colombia declared the river subject to rights. The objective of this study was to quantify trace elements in sediments and fish from Atrato watershed, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream the river. Concentration Factors (CF) suggest sediments were moderately polluted by Cr, Cu, Cd, and strongly polluted by As. Most stations had Cr (98%) and Ni (78%) concentrations greater than the Probable Effect Concentration (PEC) criteria. Together, toxic elements generate a Pollution Load Index (PLI) and a Potential Ecological Risk Index (RI) that categorized 54% of the sediments as polluted, and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels for Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with fish trophic level, suggesting these two metals biomagnify in the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. Collectively, data suggest gold mining carried out in this biodiversity hotspot releases toxic elements that have abrogated sediment quality in Atrato River, and their incorporation in the trophic chain constitutes a large threat on environmental and human health due to fish consumption. Urgent legal and civil actions should be implemented to halt massive mining-driven deforestation to enforce Atrato River rights.
Показать больше [+] Меньше [-]