Уточнить поиск
Результаты 1-10 из 567
Ambient ozone (O3) in three class I wilderness areas in the northeastern USA: measurements with Ogawa passive samplers.
1996
Manning W.J. | Krupa S.V. | Bergweiler C.J. | Nelson K.I.
The impact of UV-B radiation and ozone on terrestrial vegetation.
1994
Runeckles V.C. | Krupa S.V.
The carbon budget of Canadian forests: A sensitivity analysis of changes in disturbance regimes, growth rates, and decomposition rates.
1994
Kurz W.A. | Apps M.J.
The mobility, partitioning and degradation of atrazine and simazine in the salt marsh environment.
1995
Meakins N.C. | Bubb J.M. | Lester J.N.
Monitoring polycyclic aromatic hydrocarbons (PAHs) and heavy metals in urban soil, compost and vegetation.
1995
Niederer M. | Maschka Selig A. | Hohl C.
Soil microorganisms suppressed by emissions of a magnesite plant in the Slovak Republic
2002
Kautz, G. (University of Cologne, Cologne (Germany). Institute of Zoology) | Zimmer, M. | Zach, P.: Kulfan, J. | Topp, W. | Zelinkova, D.
Soil microorganisms are important for plant growth and beneficial for the nutrition and the development of a variety of soil animals. Together with soil invertebrates they also improve nutrients availability in soils. Although not frequent in Europe , magnesite emissions can affect the nutritional status of the vegetation and the survival of soil microorganisms as well as other biota locally, and thus may be crucially responsible for the quality of the entire biotic system. The observed gradients of soil microbial characteristics reflect the physico-chemical properties of soils around the magnesite plant and may be used to predict transitory changes during amelioration
Показать больше [+] Меньше [-]Nocturnal pollutant uptake contributes significantly to the total stomatal uptake of Mangifera indica
2022
Datta, Savita | Sharma, Anita | Sinha, Baerbel
DO₃SE (Deposition of Ozone for Stomatal Exchange), is a dry deposition model, designed to assess tropospheric ozone risk to vegetation, and is based on two alternative algorithms to estimate stomatal conductance: multiplicative and photosynthetic. The multiplicative model has been argued to perform better for leaf-level and regional-level application. In this study, we demonstrate that the photosynthetic model is superior to the multiplicative model even for leaf-level studies using measurements performed on Mangifera indica. We find that the multiplicative model overestimates the daytime stomatal conductance, when compared with measured stomatal conductance and prescribes zero conductance at night while measurements show an average conductance of 100 mmol(H₂O)m⁻²s⁻¹ between 9 p.m. and 4 a.m. The daytime overestimation of the multiplicative model can be significantly reduced when the model is modified to include a response function for ozone-induced stomatal closure. However, nighttime pollutant uptake fluxes can only be accurately assessed with the photosynthetic model which includes the stomatal opening at night during respiration and is capable of reproducing the measured nighttime stomatal conductance. At our site, the nocturnal flux contributes 64%, 39%, 46%, and 88% of the total for NO₂ uptake in winter, summer, monsoon, and post-monsoon, respectively. For SO₂, nocturnal uptake amounts to 35%, 28%, 28%, and 44% in winter, summer, monsoon, and post-monsoon, respectively while for ozone the nighttime uptake contributes 30%, 17%, 18%, and 29% of the total stomatal uptake in winter, summer, monsoon, and post-monsoon respectively.
Показать больше [+] Меньше [-]Inorganic and methylated mercury dynamics in estuarine water of a salt marsh in Massachusetts, USA
2022
Wang, Ting | Obrist, Daniel
Salt marsh estuaries serve as sources and sinks for nutrients and elements to and from estuarine water, which enhances and alleviates watershed fluxes to the coastal ocean. We assessed sources and sinks of mercury in the intertidal Plum Island Sound estuary in Massachusetts, the largest salt marsh estuary of New England, using 25-km spatial water sampling transects. Across all seasons, dissolved (FHg) and total (THg) mercury concentrations in estuarine water were highest and strongly enhanced in upper marshes (1.31 ± 0.20 ng L⁻¹ and 6.56 ± 3.70 ng L⁻¹, respectively), compared to riverine Hg concentrations (0.86 ± 0.17 ng L⁻¹ and 0.88 ± 0.34 ng L⁻¹, respectively). Mercury concentrations declined from upper to lower marshes and were lowest in ocean water (0.38 ± 0.10 ng L⁻¹ and 0.56 ± 0.25 ng L⁻¹, respectively). Conservative mixing models using river and ocean water as endmembers indicated that internal estuarine Hg sources strongly enhanced estuarine water Hg concentrations. For FHg, internal estuarine Hg contributions were estimated at 26 g yr⁻¹ which enhanced Hg loads from riverine sources to the ocean by 44%. For THg, internal sources amounted to 251 g yr⁻¹ and exceeded riverine sources six-fold. Proposed sources for internal estuarine mercury contributions include atmospheric deposition to the large estuarine surface area and sediment re-mobilization, although sediment Hg concentrations were low (average 23 ± 2 μg kg⁻¹) typical of uncontaminated sediments. Soil mercury concentrations under vegetation, however, were ten times higher (average 200 ± 225 μg kg⁻¹) than in intertidal sediments suggesting that high soil Hg accumulation might drive lateral export of Hg to the ocean. Spatial transects of methylated Hg (MeHg) showed no concentration enhancements in estuarine water and no indication of internal MeHg sources or formation. Initial mass balance considerations suggest that atmospheric deposition may either be in similar magnitude, or possibly exceed lateral tidal export which would be consistent with strong Hg accumulation observed in salt marsh soils sequestering Hg from current and past atmospheric deposition.
Показать больше [+] Меньше [-]Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake
2022
Lettoof, Damian C. | Cornelis, Jari | Jolly, Christopher J. | Aubret, Fabien | Gagnon, Marthe Monique | Hyndman, Timothy H. | Barton, Diane P. | Bateman, Philip W.
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators—as bioindicators—can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation–landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
Показать больше [+] Меньше [-]Emissions of biogenic volatile organic compounds from urban green spaces in the six core districts of Beijing based on a new satellite dataset
2022
Li, Xin | Chen, Wenjing | Zhang, Hanyu | Xue, Tao | Zhong, Yuanwei | Qi, Min | Shen, Xianbao | Yao, Zhiliang
Urban green spaces (UGSs) are often positively associated with the health of urban residents. However, UGSs may also have adverse health effects by releasing biogenic volatile organic compounds (BVOCs) and increasing the ambient concentrations of ozone (O₃) and secondary organic aerosols in urban areas. BVOC emissions from UGSs might be underestimated because of the lack of consideration of the UGS land-use type in urban areas. As such, in this study, we used a newly released satellite dataset, Sentinel-2, with a resolution of 10 m, to derive the classification distribution of UGSs and predict the UGS emissions of BVOCs in Beijing in 2019. The results showed that the annual emissions of BVOCs from UGSs were approximately 2.9 Gg C (95% confidence interval (CI): 2.4–3.3) in the six core districts, accounting for approximately 39% of the total UGS emissions in Beijing. Compared with the results based on Sentinel-2, the BVOC emissions might be underestimated by approximately 37% (95% CI: 11–63) using the commonly used satellite dataset. UGSs produced the highest BVOC emissions in summer (from June to August), accounting for 75.2% of the annual emissions. UGSs contributed the most to the O₃ formation potential in summer, accounting for 41.5% of the total. We could attribute a considerable amount of the O₃ concentration (27.0 μg m⁻³, 95% CI: 21.4–32.6) to the UGS BVOCs produced in the core districts of Beijing in July. The new BVOC emissions dataset based on Sentinel-2 vegetation information facilitates modeling studies on the formation of surface O₃ in urban areas and assessments of the impact of UGSs on public health.
Показать больше [+] Меньше [-]