Уточнить поиск
Результаты 1-10 из 53
Is obesity the missing link between COVID-19 severity and air pollution?
2020
Lubrano, Carla | Risi, Renata | Masi, Davide | Gnessi, Lucio | Colao, Annamaria
In the previous publication “Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?” Conticini et al. hypothesized that the surplus of lethality of the novel SARS-CoV-2 in Northern Italy may be at least in part explained by the evidence of highest pollution reported in this area, as both severe COVID-19 and smog exposure are correlated to an innate immune system hyper-activation with subsequent lung inflammation and injury. Since this hypothesis alone does not fully explain why specific subgroups of patients are at major risk, we hypothesized that obesity may be one of the links between COVID-19 severity and high level of air pollution. First, obesity is a predisposing factor for SARS-Cov-2 infection and worse COVID-19 outcomes, and unequivocal evidence demonstrated that fat mass excess is independently associated with several pulmonary diseases and lung inflammation. Moreover, it has been shown that obesity may intensify the detrimental effects of air pollution on the lungs, and this is not surprising if we consider that these conditions share an excessive activation of the immune system and a lung inflammatory infiltrate. Finally, fat mass excess has also been speculated to be itself a consequence of air pollutants exposure, which has been proved to induce metabolic disruption and weight gain in murine models. In conclusion, although many variables must be taken into account in the analysis of the pandemic, our observations suggest that obesity may act as effect modifier of smog-induced lung-injury, and the concomitant presence of these two factors could better explain the higher virulence, faster spread and greater mortality of SARS-CoV-2 in Northern Italy compared to the rest of the country.
Показать больше [+] Меньше [-]Dissemination of extended-spectrum β-lactamase-producing Escherichia coli carrying mcr-1 among multiple environmental sources in rural China and associated risk to human health
2019
Ji, Xiang | Zheng, Beiwen | Berglund, Björn | Zou, Huiyun | Sun, Qiang | Chi, Xiaohui | Ottoson, Jakob | Li, Xuewen | Lundborg, Cecilia Stålsby | Nilsson, Lennart E.
Antibiotic resistance among gram-negative bacteria is increasingly becoming a problem of global concern. Particularly problematic is the emergence of resistance to last-resort antibiotics such as carbapenems and colistin. The increasing number of reports on the plasmid-mediated colistin resistance gene mcr-1 in isolates worldwide is raising concerns for the future usefulness of this class of antibiotics. Dissemination of mcr-1 is believed to have originated mainly from animal breeding, however, the role of the environment as a transmission source is not yet fully understood. In the current study, 89 extended-spectrum β-lactamase-producing Escherichia coli isolated from 231 samples from different environmental sources in 12 villages in a rural area of Shandong, China, were screened for mcr-1. 17 (19.1%) mcr-1-positive isolates were found from different environmental sources, aggregated in 6 villages. Plasmids of three different Inc-groups carrying mcr-1 were confirmed, indicating that the widespread geographical distribution of mcr-1 in the local area is due to a number of different plasmids. Additionally, almost a third (29.4%) of the isolates carried virulence factors associated to intestinal pathogenic E. coli. These results illustrate the high complexity of the transmission patterns of mcr-1 among different environmental matrices on a local scale and the potential for the environment to facilitate dissemination and emergence of antibiotic-resistant and virulent strains of bacteria.
Показать больше [+] Меньше [-]Prevalence, antibiotic resistance patterns and molecular characterization of Escherichia coli from Austrian sandpits
2014
Badura, Alexandra | Luxner, Josefa | Feierl, Gebhard | Reinthaler, Franz F. | Zarfel, Gernot | Galler, Herbert | Pregartner, Gudrun | Riedl, Regina | Grisold, Andrea J.
The aim was to determine the prevalence of E. coli and coliform bacteria in playground sand of all public children's sandpits in Graz (n = 45), Austria, and to assess the frequency of antimicrobial resistance in E. coli. Molecular characterization included the discrimination of O-serotypes and H-antigens and the determination of virulence and resistance genes, using a microarray technology. E. coli isolates were tested for susceptibility to a set of antibiotics by VITEK2 system and disk diffusion method. In total, 22 (49%) and 44 (98%) sandpits were positive for E. coli and coliform bacteria. Median concentrations of E. coli and coliform bacteria in the sand samples were: 2.6 × 104 CFU/100 g and 3.0 × 105 CFU/100 g. Resistance rates were: ampicillin, 12.5%; piperacillin, 10.4%; amoxicillin/clavulanic acid, 9.4%; cotrimoxazole, 6.3%; tetracycline, 6.3%; piperacillin/tazobactam, 5.2%. No ESBL- or carbapenemase-producing isolates were found. The most prevalent serogroups were O15, O6 and O4. Isolates harbored 0 up to 16 different virulence genes.
Показать больше [+] Меньше [-]Per- and polyfluoroalkyl substances enhance Staphylococcus aureus pathogenicity and impair host immune response
2022
Chandra Kumar Mangu, Jagadish | Stylianou, Marios | Olsson, Per-Erik | Jass, Jana
Per- and Poly-fluoroalkyl substances (PFAS) are one of the major persistent environmental contaminants. Epidemiological studies have linked PFAS exposures to altered immunity and increased occurrence of infections in children. However, the mechanisms leading to immune susceptibility to bacterial infections remains unclear. To elucidate the mechanism, transcriptional alteration in the Caenorhabditis elegans model caused by a PFAS contaminated environmental water and two reconstituted PFAS solutions were evaluated using RNA-sequencing. PFAS affected the expression of several genes involved in C. elegans immune surveillance to Gram-positive bacteria (cpr-2, tag-38, spp-1, spp-5, clec-7, clec-172). The combined exposure to PFAS and Staphylococcus aureus significantly reduced C. elegans survival and increased intestinal membrane permeability. Furthermore, the growth of S. aureus in the presence of PFAS increased the expression of virulence genes, specifically, the virulence gene regulator saeR and α-hemolysin, hla, which resulted in increased hemolytic activity. The present study demonstrated that PFAS exposure not only increased C. elegans susceptibility to pathogens by reducing host immunity and increasing intestinal membrane permeability, but also increased bacteria virulence. This presents a broader implication for humans and other animals, where environmental contaminants simultaneously reduce host resilience, while, increasing microbial pathogenicity.
Показать больше [+] Меньше [-]Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics
2022
Kim, HeeSoo | Kim, Mincheol | Kim, Sanghee | Lee, Yung Mi | Shin, Seung Chul
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenome-assembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
Показать больше [+] Меньше [-]The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review
2021
Niazi, Sadegh | Groth, Robert | Spann, Kirsten | Johnson, Graham R.
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses’ viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
Показать больше [+] Меньше [-]High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces
2020
Zhao, Huiru | Sun, Ruonan | Yu, Pingfeng | Alvarez, Pedro J.J.
This study analyzed fresh feces from three common bird species that live in urban environments and interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major classes of antibiotics (i.e., tetracyclines, β-lactams, and sulfonamides) and the mobile genetic element integrase gene (intI1) were abundant (up to 10⁹, 10⁸, 10⁹, and 10¹⁰ copies/g dry feces for tetW, blaTEM, sul1, and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abundant (up to 10⁷ copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and dissemination of ARGs, and the associated health risks.
Показать больше [+] Меньше [-]Role of the Nrf2-ARE pathway in perfluorooctanoic acid (PFOA)-induced hepatotoxicity in Rana nigromaculata
2018
Tang, Juan | Jia, Xiuying | Gao, Nana | Wu, Yingzhu | Liu, Zhengquan | Lu, Xiangjun | Du, Qiongxia | He, Jianbo | Li, Ning | Chen, Bin | Jiang, Jinxiao | Liu, Wenli | Ding, Ying | Zhu, Weiqin | Zhang, Hangjun
Perfluorooctanoic acid (PFOA) is widely distributed in various environmental media and is toxic to organisms. This study demonstrated that PFOA induces hepatotoxicity in the frog and evaluated the role of CYP3A and the Nrf2-ARE signaling pathway in regulating responses to PFOA-induced hepatotoxicity. Rana nigromaculata were exposed to 0, 0.01, 0.1, 0.5, or 1 mg/L PFOA solutions in a static-renewal system for 14 days. Liver tissue samples were collected 24 h after the last treatment. Hepatic histology was observed by HE staining and transmission electron microscopy. The oxidative stress levels in the liver were measured. The expression levels of CYP3A, Nrf2, NQO1, and HO-1 mRNA were measured by quantitative reverse transcription–polymerase chain reaction. PFOA-treated frog liver tissue exhibited diffuse cell borders, cytoplasmic vacuolization, broken nuclei, nuclear chromatin margination, and swollen mitochondria. In addition, the livers of PFOA-treated frogs showed a significantly elevated content of reactive oxygen species, malondialdehyde, glutathione and glutathione S-transferase activity compared to the livers of control frogs. However, the glutathione peroxidase activities concomitantly decreased in PFOA-treated frogs compared to those in the control group. Furthermore, compared with control frogs, the expression levels of CYP3A, Nrf2, and NQO1 mRNA significantly increased in PFOA-treated frogs. HO-1 mRNA expression remarkably increased only in groups treated with 0.5 or 1 mg/L PFOA. Our results indicate that PFOA induces hepatotoxicity in a dose-dependent manner. Furthermore, the results of the comparison analysis between different gender groups illustrated that PFOA is more toxic to female frogs than male frogs. Our results demonstrated that PFOA causes liver damage and that CYP3A enhances PFOA-induced female frogs hepatotoxicity are more virulent than male through biotransformation, and the activation of the Nrf2-ARE pathway is induced to protect against hepatotoxicity in Rana nigromaculata, all of which provide the scientific basis for the protection of amphibians against environmental contaminants.
Показать больше [+] Меньше [-]Changes in mycelia growth, sporulation, and virulence of Phytophthora capsici when challenged by heavy metals (Cu2+, Cr2+ and Hg2+) under acid pH stress
2018
Liu, Peiqing | Wei, Mengyao | Zhang, Jinzhu | Wang, Rongbo | Li, Benjin | Chen, Qinghe | Weng, Qiyong
Phytophthora capsici, an economically devastating oomycete pathogen, causes devastating disease epidemics on a wide range of vegetable plants and pose a grave threat to global vegetables production. Heavy metals and acid pH are newly co-occurring stresses to soil micro-organisms, but what can be expected for mycelia growth and virulence and how they injure the oomycetes (especially P. capsici) remains unknown. Here, the effects of different heavy metals (Cu²⁺, Cr²⁺, and Hg²⁺) on mycelia growth and virulence were investigated at different pHs (4.0 vs. 7.0) and the plausible molecular and physiological mechanisms were analyzed. In the present study, we compared the effective inhibition of different heavy metals (Cu²⁺, Cr²⁺, and Hg²⁺) and acid pH on a previously genome sequenced P. capsici virulent strain LT1534. Both stress factors independently affected its mycelia growth and sporulation. Next, we investigated whether ROS participated in the pH-inhibited mycelial growth, finding that the ROS scavenger, catalase (CAT), significantly inhibited the acid pH-induced ROS in mycelia. Additionally, because MAPK specially transmits different stress responsive signals in environment into cells, we employed CAT and a p38-MAPK pathway inhibitor to investigate ROS and p38-MAPK roles in heavy metal-inhibited mycelia growth at different pHs (4.0 vs. 7.0), finding that they significantly inhibited growth. Furthermore, ROS and p38-MAPK influenced the heavy metal-induced TBARS content, total antioxidant capacity (TAC), and CAT activity at different pHs, and also reduced the expression of infection-related laccases (PcLAC2) and an effector-related protein (PcNLP14). We propose that acid pH stress accelerates how heavy metals inhibit mycelium growth, sporulation, and virulence change in P. capsici, and posit that ROS and p38-MAPK function to regulate the molecular and physiological mechanisms underlying this toxicity. Although these stresses induce molecular and physiological challenges to oomycetes, much remains to be known the mechanisms dedicated to resolve these environmental stresses.
Показать больше [+] Меньше [-]Predicting the effects of polychlorinated biphenyls on cetacean populations through impacts on immunity and calf survival
2018
Hall, Ailsa J. | McConnell, Bernie J. | Schwacke, Lori H. | Ylitalo, Gina M. | Williams, Rob | Rowles, Teri K.
The potential impact of exposure to polychlorinated biphenyls (PCBs) on the health and survival of cetaceans continues to be an issue for conservation and management, yet few quantitative approaches for estimating population level effects have been developed. An individual based model (IBM) for assessing effects on both calf survival and immunity was developed and tested. Three case study species (bottlenose dolphin, humpback whale and killer whale) in four populations were taken as examples and the impact of varying levels of PCB uptake on achievable population growth was assessed. The unique aspect of the model is its ability to evaluate likely effects of immunosuppression in addition to calf survival, enabling consequences of PCB exposure on immune function on all age-classes to be explored. By incorporating quantitative tissue concentration-response functions from laboratory animal model species into an IBM framework, population trajectories were generated. Model outputs included estimated concentrations of PCBs in the blubber of females by age, which were then compared to published empirical data. Achievable population growth rates were more affected by the inclusion of effects of PCBs on immunity than on calf survival, but the magnitude depended on the virulence of any subsequent encounter with a pathogen and the proportion of the population exposed. Since the starting population parameters were from historic studies, which may already be impacted by PCBs, the results should be interpreted on a relative rather than an absolute basis. The framework will assist in providing quantitative risk assessments for populations of concern.
Показать больше [+] Меньше [-]