Уточнить поиск
Результаты 1-10 из 135
Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom
2021
Jephcote, Calvin | Hansell, A. L. (Anna L.) | Adams, Kathryn | Gulliver, John
The UK implemented a lockdown in Spring (2020) to curtail the person-to-person transmission of the SARS-CoV-2 virus. Measures restricted movements to one outing per day for exercise and shopping, otherwise most people were restricted to their dwelling except for key workers (e.g. medical, supermarkets, and transport). In this study, we quantified changes to air quality across the United Kingdom from 30/03/2020 to 03/05/2020 (weeks 14–18), the period of most stringent travel restrictions. Daily pollutant measurements of NO₂, O₃ and PM₂.₅ from the national network of monitoring sites during this period were compared with measurements over the same period during 2017–19. Comparisons were also made with predicted concentrations for the 2020 period from business-as-usual (BAU) modelling, where the contributions of normal anthropogenic activities were estimated under the observed meteorological conditions. During the lockdown study period there was a 69% reduction in traffic overall (74% reduction in light and 35% in heavy vehicles). Measurements from 129 monitoring stations, identified mean reductions in NO₂ of 38.3% (−8.8 μg/m³) and PM₂.₅ of 16.5% (−2.2 μg/m³). Improvements in NO₂ and PM₂.₅ were largest at urban traffic sites and more modest at background locations where a large proportion of the population live. In contrast, O₃ concentrations on average increased by 7.6% (+4.8 μg/m³) with the largest increases at roadside sites due to reductions in local emissions of NO. A lack of VOC monitoring limited our capacity to interpret changes in O₃ at urban background locations. BAU models predicted comparable NO₂ reductions and O₃ gains, although PM₂.₅ episodes would have been more prominent without lockdown. Results demonstrate the relatively modest contribution of traffic to air quality, suggesting that sustained improvements in air quality require actions across various sectors, including working with international and European initiatives on long-range transport air pollutants, especially PM₂.₅ and O₃.
Показать больше [+] Меньше [-]Biorepositories (biobanks) of human body fluids and materials as archives for tracing early infections of COVID-19
2021
He, Shanshan | Han, Jie
Identifying the individuals and geographical regions witnessing early infections or outbreaks of SARS-CoV-2 and its variants is helpful for studying the early epidemiology or even the origin of the novel coronavirus. Here, we put forward a strategy that can potentially contribute to this goal. Human body fluids and biological materials collected before the COVID-19 pandemic may serve as archives for retrospective testing of early human infections before the recent outbreaks. These have been routinely donated, collected, and archived, creating biorepositories or “biobanks” for clinical or research purposes. SARS-CoV-2 genetic materials and its antibodies have been confirmed in various types of biological samples from COVID-19 patients, including blood, sperm, umbilical cord blood, lung, heart, kidney and so on, making these biological archives as candidates for detecting early COVID-19 infections. Unlike sewage-based epidemiology which only provides information on the geographical aspect, viruses identified in archived human biological samples provide direct links to individuals, from whom a wealth of personal information including their profession, hobbies and activities, travel history, and previous exposure to wildlife can all be retrieved. By analyzing the patterns and links in the behavior of those early infected individuals, it is possible to trace the origin of the virus, for instance, in certain wild animals or local environments.
Показать больше [+] Меньше [-]Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world
2020
Rodríguez-Urrego, Daniella | Rodríguez-Urrego, Leonardo
On December 31, 2019, the Chinese authorities reported to the World Health Organization (WHO) the outbreak of a new strain of coronavirus that causes a serious disease in the city of Wuhan, China. This outbreak was classified as SARS-CoV2 and is the cause of the COVID-19 disease. On March 11, 2020, the WHO declares it a Pandemic and today it is considered the greatest challenge in global health that humanity has faced since World War II and it is estimated that between 40 and 60% of the population worldwide will catch the virus. This has caused enormous challenges in countries around the world in social, economic, environmental and obviously health issues. These challenges are mainly due to the effects of the established quarantines in almost all capitals and major cities around the world, from Asia, Europe to America. However, these lockdown which began worldwide from January 23, have had a significant impact on the environment and on the air quality of cities as recently reported by NASA (National Aeronautics and Space Administration) and ESA (European Space Agency), with reductions according to them of up to 30% in some of the epicenters such as the case of Wuhan. Knowing that air pollution causes approximately 29% of lung cancer deaths, 43% of COPD deaths, and 25% of ischemic heart disease deaths, it is important to know the effects of quarantines in cities regarding air quality to take measures that favor populations and urban ecosystems when the emergency ends. Therefore, this paper describes the behavior of PM₂.₅ emissions particulate matter from the 50 most polluted capital cities in the world according to the WHO, measured before-after the start of the quarantine. Likewise, the impact at the local and global level of this emissions behavior, which averaged 12% of PM₂.₅ decrease in these cities.
Показать больше [+] Меньше [-]Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden
2019
Pasalari, Hasan | Ataei-Pirkooh, Angila | Aminikhah, Mahdi | Jafari, Ahmad Jonidi | Farzadkia, Mahdi
From a health prospective, it is critical to provide a comprehensive model which integrates all the parameters involved in virus transmission and its consequences on human body. In order to estimate the health risks, for workers and residents, associated with an exposure airborne viruses emitted from a wastewater treatment (WWTP), the concentration levels of viruses in emitted bioaerosols over a twelve-month period were measured by real-time polymerase chain reaction (RT-PCR). A combined Gaussian plum dispersion model and quantitative microbial risk assessment (QMRA) with Monte-Carlo simulation served as suitable explanatory tools to estimate the risk of acquiring gastrointestinal illness (GI) due to exposure to air containing Rotavirus (RoV) and Norovirus (NoV) bioaerosols. Additionally, DALY metric was applied to quantify the disability and mortality for workers and residents. RoV and NoV were detected above aeration tank with annual mean concentration 27 and 3099 (Viruses/m³.h), respectively. The medium calculated DALY indicator based on viral loads in contaminant source (RoV:5.76 × 10⁻² and NoV:1.23 × 10⁻¹) and estimated in different distances away (300–1000 m) (RoV:2.87 × 10⁻²- 2.75 × 10⁻² and NoV:1.14 × 10⁻¹-1.13 × 10⁻¹) were markedly higher than the threshold values recommended by US EPA (10⁻⁴ DALY pppy) and WHO (10⁻⁶ DALY pppy). The sensitivity analysis highlighted dose exposure and disease burden per case (DBPC) as two most influential factors for both workers and residents following exposure to two pathogens of concern. Due to high resistance and high concentration in the environment, the presence of RoV and NoV can intensify the consequences of diarrhea especially for children under five years of age; A comprehensible and transparent presentation of DALYs and QMRA can help decision makers and responsibilities to justify the priorities of exposure to wastewater in comparison with other risks of daily life.
Показать больше [+] Меньше [-]Antibiotics-induced changes in intestinal bacteria result in the sensitivity of honey bee to virus
2022
Deng, Yanchun | Yang, Sa | Zhao, Hongxia | Luo, Ji | Yang, Wenchao | Hou, Chunsheng
Antibiotics are omnipresent in the environment due to their widespread use, and they have wide-ranging negative impacts on organisms. Virus resistance differs substantially between domesticated Apis mellifera and wild Apis cerana, although both are commonly raised in China. Here, we investigated whether antibiotics can increase the sensitivity of honey bees to viral infection using the Israeli acute paralysis virus (IAPV) and tetracycline as representative virus and antibiotic. Although IAPV multiplied to lower levels in A. cerana than A. mellifera, resulting in decreased mortality (P < 0.01), there was no significant difference in immune responses to viral infection between the two species. Adult worker bees (A. cerana and A. mellifera) were treated with or without tetracycline to demonstrate the prominent role of gut microbiota against viral infection, and found Lactobacillus played a vital antiviral role in A. cerana. In A. cerana but not A. mellifera, tetracycline treatment reduced clearly bee survival and increased susceptibility to IAPV infection (P < 0.01). Our findings revealed that long-term antibiotic treatment in A. mellifera had altered the native gut microbiome and promoted the sensitivity to viral infection. We highlight the effects of antibiotics exposure on resistance to microbial and viral infection.
Показать больше [+] Меньше [-]Uncertainty analysis of facemasks in mitigating SARS-CoV-2 transmission
2022
Liu, Fan | Qian, Hua
In the context of global spread of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2), there is a controversial issue on whether the use of facemasks is promising to control or mitigate the COVID-19 transmission. This study modeled the SARS-CoV-2 transmission process and analyzed the ability of surgical mask and N95 in reducing the infection risk with Sobol's analysis. Two documented outbreaks of COVID-19 with no involvers wearing face masks were reviewed in a restaurant in Guangzhou (China) and a choir rehearsal in Mount Vernon (USA), suggesting that the proposed model can be well validated when airborne transmission is assumed to dominate the virus transmission indoors. Subsequently, the uncertainty analysis of the protection efficiency of N95 and surgical mask were conducted with Monte Carlo simulations, with three main findings: (1) the uncertainty in infection risk is primarily apportioned by respiratory activities, virus dynamics, environment factors and individual exposures; (2) wearing masks can effectively reduce the SARS-CoV-2 infection risk to an acceptable level (< 10⁻³) by at least two orders of magnitude; (3) faceseal leakage can reduce protection efficiency by approximately 4% when the infector is speaking or coughing, and by approximately 28% when the infector is sneezing. This work indicates the effectiveness of non-pharmaceutical interventions during the pandemic, and implies the importance of the synergistic studies of medicine, environment, social policies and strategies, etc., on reducing hazards and risks of the pandemic.
Показать больше [+] Меньше [-]Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19?
2021
Chen, Bo | Han, Jie | Dai, Han | Jia, Puqi
During the current pandemic, chemical disinfectants are ubiquitously and routinely used in community environments, especially on common touch surfaces in public settings, as a means of controlling the virus spread. An underappreciated risk in current regulatory guidelines and scholarly discussions, however, is that the persisting input of chemical disinfectants can exacerbate the growth of biocide-tolerant and antibiotic-resistant bacteria on those surfaces and allow their direct transfers to humans. For COVID-19, the most commonly used disinfecting agents are quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite, and ethanol, which account for two-thirds of the active ingredients in current EPA-approved disinfectant products for the novel coronavirus. Tolerance to each of these compounds, which can be either intrinsic or acquired, has been observed on various bacterial pathogens. Of those, mutations and horizontal gene transfer, upregulation of efflux pumps, membrane alteration, and biofilm formation are the common mechanisms conferring biocide tolerance in bacteria. Further, the linkage between disinfectant use and antibiotic resistance was suggested in laboratory and real-life settings. Evidence showed that substantial bacterial transfers to hands could effectuate from short contacts with surrounding surfaces and further from fingers to lips. While current literature on disinfectant-induced antimicrobial resistance predominantly focuses on municipal wastes and the natural environments, in reality the community and public settings are most severely impacted by intensive and regular chemical disinfecting during COVID-19 and, due to their proximity to humans, biocide-tolerant and antibiotic-resistant bacteria emerged in these environments may pose risks of direct transfers to humans, particularly in densely populated urban communities. Here we highlight these risk factors by reviewing the most pertinent and up-to-date evidence, and provide several feasible strategies to mitigate these risks in the scenario of a prolonging pandemic.
Показать больше [+] Меньше [-]Associations between air pollution and COVID-19 epidemic during quarantine period in China
2021
Zhang, Xinhan | Tang, Mengling | Guo, Fanjia | Wei, Fang | Yu, Zhebin | Gao, Kai | Jin, Mingjuan | Wang, Jianbing | Chen, Kun
The coronavirus disease (COVID-19) has become a global public health threaten. A series of strict prevention and control measures were implemented in China, contributing to the improvement of air quality. In this study, we described the trend of air pollutant concentrations and the incidence of COVID-19 during the epidemic and applied generalized additive models (GAMs) to assess the association between short-term exposure to air pollution and daily confirmed cases of COVID-19 in 235 Chinese cities. Disease progression based on both onset and report dates as well as control measures as potential confounding were considered in the analyses. We found that stringent prevention and control measures intending to mitigate the spread of COVID-19, contributed to a significant decline in the concentrations of air pollutants except ozone (O₃). Significant positive associations of short-term exposure to air pollutants, including particulate matter with diameters ≤2.5 μm (PM₂.₅), particulate matter with diameters ≤10 μm (PM₁₀), and nitrogen dioxide (NO₂) with daily new confirmed cases were observed during the epidemic. Per interquartile range (IQR) increase in PM₂.₅ (lag0-15), PM₁₀ (lag0-15), and NO₂ (lag0-20) were associated with a 7% [95% confidence interval (CI): (4–9)], 6% [95% CI: (3–8)], and 19% [95% CI: (13–24)] increase in the counts of daily onset cases, respectively. Our results suggest that there is a statistically significant association between ambient air pollution and the spread of COVID-19. Thus, the quarantine measures can not only cut off the transmission of virus, but also retard the spread by improving ambient air quality, which might provide implications for the prevention and control of COVID-19.
Показать больше [+] Меньше [-]The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review
2021
Niazi, Sadegh | Groth, Robert | Spann, Kirsten | Johnson, Graham R.
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses’ viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
Показать больше [+] Меньше [-]Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?
2020
Conticini, Edoardo | Frediani, Bruno | Caro, Dario
This paper investigates the correlation between the high level of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) lethality and the atmospheric pollution in Northern Italy. Indeed, Lombardy and Emilia Romagna are Italian regions with both the highest level of virus lethality in the world and one of Europe’s most polluted area. Based on this correlation, this paper analyzes the possible link between pollution and the development of acute respiratory distress syndrome and eventually death. We provide evidence that people living in an area with high levels of pollutant are more prone to develop chronic respiratory conditions and suitable to any infective agent. Moreover, a prolonged exposure to air pollution leads to a chronic inflammatory stimulus, even in young and healthy subjects. We conclude that the high level of pollution in Northern Italy should be considered an additional co-factor of the high level of lethality recorded in that area.
Показать больше [+] Меньше [-]