Уточнить поиск
Результаты 1-10 из 392
Enhancement of anaerobic treatment efficiency through process modification.
1987
Harper S.R. | Pohland F.G.
Effect-directed analysis of estrogenic chemicals in sediments from an electronic-waste recycling area Полный текст
2022
Ma, Qianchi | Yang, Xiaoxi | Guo, Yunhe | Wang, Yi | Liu, Yanna | Zhang, Songyan | Xie, Heidi Qunhui | Xiang, Tongtong | Li, Zikang | Nie, Tong | Yan, Yuhao | Qu, Guangbo | Jiang, Guibin
Electronic waste (e-waste) pollution is of great concern due to the release of hazardous chemicals during the improper e-waste disposal. Many chemicals leached from e-waste were reported to pose estrogenic effects. To date, little is known regarding the occurrence and biological effects of estrogenic chemicals in sediments near an e-waste area. In this study, an effect-directed analysis (EDA) is applied to determine the estrogenic chemicals in sediments of four sites collected from a typical e-waste recycling city in China. Following screening with the ER-CALUX assay, the extract of sample with the most potent effect was subjected in fractionation using reverse phase liquid chromatography. Based on a target analysis for the active fractions, four compounds, including estrone, 17β-estradiol, 17α-ethinylestradiol and bisphenol A, were identified, and these contributed to 17% of the total toxic effects in the sample. A further nontarget analysis screened four candidates, namely diethylstilbestrol (DES), hexestrol (HES), nandrolone and durabolin, and the total contribution was found to be 48% from the active sample. Specifically, DES and HES were only detected in the active sample and were found to be the primary drivers of estrogenic effects. An examination of the identified chemicals in the four sites indicated that these estrogenic chemicals may originate from e-waste recycling, livestock excretion and domestic waste. These findings uncovered the estrogenic pollutants in sediments from an e-waste area. Considering single endpoint in biological assay is not abundant to screen chemicals with different toxic effects, further EDA studies with multiple endpoints are required to better understand the occurrence of representative or unknown chemicals in e-waste-polluted areas.
Показать больше [+] Меньше [-]Natural additives contribute to hydrocarbon and heavy metal co-contaminated soil remediation Полный текст
2022
Cavazzoli, Simone | Selonen, Ville | Rantalainen, Anna-Lea | Sinkkonen, Aki | Romantschuk, Martin | Squartini, Andrea
A biological treatment method was tested in laboratory conditions for the removal of hydrocarbons contained in a waste disposal soil sample consisting of excavated sandy soil from a former fueling station. Two fractions of hydrocarbons were quantified by GC-FID: diesel (C₁₀–C₂₁) and lubricant oil (C₂₂–C₄₀). Meat and bone meal (MBM, 1% w/w) was used as a bio-stimulant agent for soil organisms. Cyclodextrin, an oligosaccharide produced from starch by enzymatic conversion, was also used to assess its ability to improve the bioavailability/biodegradability of hydrocarbons in the soil. Parameters such as temperature, pH, water content and aeration (O₂ availability) were monitored and optimized to favor degradation processes. Two different experimental tests were prepared: one to measure the degradation of hydrocarbons; the other to monitor the mobility of some elements in the soil and in the leachate produced by watering with tap water. Soil samples treated with MBM and cyclodextrin showed, over time, a greater removal of the more persistent hydrocarbon fraction (lubricant oil). MBM-treated soils underwent a faster hydrocarbon removal kinetic, especially in the first treatment period. However, the final hydrocarbon concentrations are comparable in all treatments, including control. Over time, the effect of cyclodextrin on hydrocarbon degradation seemed to be relevant. MBM-treated soils sequestered lead in the very first weeks. These results highlight the intrinsic capacity of soil, and its indigenous microbial communities, to degrade petroleum hydrocarbons and suggest that MBM-induced bioremediation is a promising, environmentally friendly technology which should be considered when dealing with hydrocarbon/heavy metal co-contaminated soils.
Показать больше [+] Меньше [-]Effects of red earthworms (Eisenia fetida) on leachability of lead minerals in soil Полный текст
2018
Kavehei, Armin | Hose, Grant C. | Gore, Damian B.
Contamination of soils by metals and metalloids is an important environmental problem in many residential and industrial sites around the world. Lead is a common contaminant, which enters the soil through mining, industrial activities and waste disposal. A range of technologies can be used to remediate soil lead, however most remediation technologies adversely affect the environment and particularly soil biota. We have assessed the efficacy of vermiremediation (the use of earthworms for remediation) to reduce water extractable lead concentrations in soil. Earthworms were introduced to a sandy soil spiked with the common lead minerals cotunnite (PbCl2), cerussite (PbCO3), massicot (PbO) or galena (PbS) at 1000 mg (Pb) kg−1. Lead concentrations in pore water extracted during the experiment were not significantly different in contaminated soil with and without worms. However, concentrations of lead in water from a deionised water extraction (washing) of contaminated soil were significantly lower in soil with earthworms than in soil without. Earthworms accumulated on average (±1 standard deviation) 276 ± 118, 235 ± 66, 241 ± 58 and 40 ± 30 mg kg−1 (dry weight of earthworms) of lead in their bodies, in PbCl2, PbCO3, PbO and PbS-dosed soils, respectively. During the experiment, earthworms lost weight in all contaminated soils, except those containing PbS.
Показать больше [+] Меньше [-]Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities Полный текст
2018
Peng, Guyu | Xu, Pei | Zhu, Bangshang | Bai, Mengyu | Li, Daoji
Microplastics, which are plastic debris with a particle diameter of less than 5 mm, have attracted growing attention in recent years. Its widespread distributions in a variety of habitats have urged scientists to understand deeper regarding their potential impact on the marine living resources. Most studies on microplastics hitherto are focused on the marine environment, and research on risk assessment methodology is still limited. To understand the distribution of microplastics in urban rivers, this study investigated river sediments in Shanghai, the largest urban area in China. Seven sites were sampled to ensure maximum coverage of the city's central districts, and a tidal flat was also included to compare with river samples. Density separation, microscopic inspection and μ-FT-IR analysis were conducted to analyze the characteristics of microplastics and the type of polymers. The average abundance of microplastics in six river sediment samples was 802 items per kilogram of dry weight. The abundance in rivers was one to two orders of magnitude higher than in the tidal flat. White microplastic spheres were most commonly distributed in river sediments. Seven types of microplastics were identified, of which polypropylene was the most prevailing polymers presented. The study then conducted risk assessment of microplastics in sediments based on the observed results, and proposed a framework of environmental risk assessment. After reviewing waste disposal related legislation and regulations in China, this study conclude that in situ data and legitimate estimations should be incorporated as part of the practice when developing environmental policies aiming to tackle microplastic pollution.
Показать больше [+] Меньше [-]Employing CO2 as reaction medium for in-situ suppression of the formation of benzene derivatives and polycyclic aromatic hydrocarbons during pyrolysis of simulated municipal solid waste Полный текст
2017
This study proposes a strategic principle to enhance the thermal efficiency of pyrolysis of municipal solid waste (MSW). An environmentally sound energy recovery platform was established by suppressing the formation of harmful organic compounds evolved from pyrolysis of MSW. Using CO2 as reaction medium/feedstock, CO generation was enhanced through the following: 1) expediting the thermal cracking of volatile organic carbons (VOCs) evolved from the thermal degradation of the MSWs and 2) directly reacting VOCs with CO2. This particular influence of CO2 on pyrolysis of the MSWs also led to the in-situ mitigation of harmful organic compounds (e.g., benzene derivatives and polycyclic aromatic hydrocarbons (PAHs)) considering that CO2 acted as a carbon scavenger to block reaction pathways toward benzenes and PAHs in pyrolysis. To understand the fundamental influence of CO2, simulated MSWs (i.e., various ratios of biomass to polymer) were used to avoid any complexities arising from the heterogeneous matrix of MSW. All experimental findings in this study suggested the foreseeable environmental application of CO2 to energy recovery from MSW together with disposal of MSW.
Показать больше [+] Меньше [-]Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities Полный текст
2016
Cabral, Lucélia | Júnior, Gileno Vieira Lacerda | Pereira de Sousa, Sanderson Tarciso | Dias, Armando Cavalcante Franco | Lira Cadete, Luana | Andreote, Fernando Dini | Hess, Matthias | de Oliveira, Valéria Maia
Mangroves are complex and dynamic ecosystems highly dependent on diverse microbial activities. In the last decades, these ecosystems have been exposed to and affected by diverse human activities, such as waste disposal and accidental oil spills. Complex microbial communities inhabiting the soil and sediment of mangroves comprise microorganisms that have developed mechanisms to adapt to organic and inorganic contaminants. The resistance of these microbes to contaminants is an attractive property and also the reason why soil and sediment living microorganisms and their enzymes have been considered promising for environmental detoxification. The aim of the present study was to identify active microbial genes in heavy metals, i.e., Cu, Zn, Cd, Pb and Hg, and antibiotic resistomes of polluted and pristine mangrove sediments through the comparative analysis of metatranscriptome data. The concentration of the heavy metals Zn, Cr, Pb, Cu, Ni, Cd, and Hg and abundance of genes and transcripts involved in resistance to toxic compounds (the cobalt-zinc-cadmium resistance protein complex; the cobalt-zinc-cadmium resistance protein CzcA and the cation efflux system protein CusA) have been closely associated with sites impacted with petroleum, sludge and other urban waste. The taxonomic profiling of metatranscriptome sequences suggests that members of Gammaproteobacteria and Deltaproteobacteria classes contribute to the detoxification of the polluted soil. Desulfobacterium autotrophicum was the most abundant microorganism in the oil-impacted site and displayed specific functions related to heavy metal resistance, potentially playing a key role in the successful persistence of the microbial community of this site.
Показать больше [+] Меньше [-]An urgent need for an EPA standard for disposal of coal ash Полный текст
2014
Lemly, A Dennis
EPA, the White House, and electric utilities are stalled in a struggle over a proposed new rule on coal ash disposal. Although this rule is long overdue, EPA now stands on the cusp of bringing forward a landmark decision that could benefit aquatic resources in the USA for decades to come and also set an important regulatory leadership example for the international community to follow. However, multi-million dollar wildlife losses are continuing to pile up as things stall in Washington. In this commentary I use a newly reported example, Wildlife Damage Case 23, to further illustrate serious flaws in the National Pollutant Discharge Elimination System that EPA's new rule can address. Case 23 provides additional impetus for EPA and the White House to move swiftly and decisively to end surface impoundment disposal of coal ash and the associated toxic impacts to wildlife.
Показать больше [+] Меньше [-]Migration of polybrominated diphenyl ethers in biosolids-amended soil Полный текст
2013
Gorgy, Tamer | Li, Loretta Y. | Grace, John R. | Ikonomou, Michael G.
A field investigation was carried out to determine PBDE concentrations over a one-year period in agricultural soils onto which 80 tonnes biosolids/hectare had been applied. The PBDE concentrations increased from 80 to 300 pg/g dry weight basis to 300 × 103–600 × 103 pg/g dw due to biosolids application, and PBDEs migrated downwards to depths of at least 0.85 m. Concentrations decreased non-uniformly with depth. PBDE levels decreased exponentially in the topmost biosolids-amended soils layer, while increasing in the next underlying soil layer over the one-year period. The rate of decrease of total PBDE mass in the top 0.00–0.05 m layer was almost two orders of magnitude greater than the rates of increase in total PBDE mass in the lower layers, indicating that effects such as photodegradation and/or volatilization likely were to have been significant in the surface layer.
Показать больше [+] Меньше [-]Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar Полный текст
2013
K̲h̲ān, Sardār | Wang, Ning | Reid, Brian J. | Freddo, Alessia | Cai, Chao
The influence of sewage sludge (SS) and sewage sludge biochar (SSBC) upon biomass yield and the bioaccumulation of PAHs into lettuce plants grown in contaminated soil (∑16PAH 20.2 ± 0.9 mg kg−1) is presented. All SSBC amendments (2, 5 and 10%) and the 2% SS amendment significantly (P < 0.01) increased lettuce biomass. Both SS and SSBC amendments significantly reduced (P < 0.01) the bioaccumulation of PAHs at all application levels; with reduction in ∑16PAH concentration ranging between 41.8 and 60.3% in SS amended treatments and between 58.0 and 63.2% in SSBC amended treatments, with respect to the control. Benefits in terms of biomass production and PAHs bioaccumulation reduction were greatest where SSBC was used as a soil amendment. At high application rates (10%) SSBC reduced bioaccumulation of PAHs by between 56% and 67%, while SS reduced bioaccumulation of PAHs by less than 44%.
Показать больше [+] Меньше [-]