Уточнить поиск
Результаты 1-10 из 45
Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil Полный текст
2019
Mao, Jiefei | Zhang, Kun | Chen, Baoliang
Biochar addition to soil may change the hydrophobicity of amended soil and influence soil hydraulic properties. Soil hydrophobicity, i.e. soil water repellency (SWR) can interrupt water infiltration and form preferential flow leading to a potential risk of soil erosion or groundwater pollution. Up to date, the effect of different biochars on soil hydrophobicity remains unclear and the association of SWR with soil hydraulic properties is still unknown. To link the biochar hydrophobicity to SWR and soil water holding capacity (WHC), the surface structure and chemical composition of 27 biochars with different feedstocks and pyrolysis temperatures were characterized, and the SWR and soil WHC of biochar-added soil were investigated. Carboxylic groups on the biochar surface, surface area and pore volume were mostly influenced by pyrolysis temperature, which suggested the dominant factor determining the severity of biochar hydrophobicity was pyrolysis temperature. Hydrophilic soil became hydrophobic after biochar amendment. A higher addition rate led to a stronger SWR of hydrophilic soil. Biochar addition increased soil WHC of hydrophilic soil with low total organic carbon (TOC) content. Biochar did not have significant influence on SWR and soil WHC of hydrophobic soil with high TOC content. It implied that the influence of biochar on SWR and soil hydraulic properties mainly depended on soil original hydrophobicity and TOC content. Therefore, the properties of biochar and influence on soil hydrophobicity and hydraulic properties should be considered before processing biochar application.
Показать больше [+] Меньше [-]Land-use type affects N2O production pathways in subtropical acidic soils Полный текст
2018
Zhang, Yushu | Ding, Hong | Zheng, Xiangzhou | Ren, Xiangyun | Cardenas, L. (Laura) | Carswell, Alison | Misselbrook, T. (Tom)
The change in land-use from woodland to crop production leads to increased nitrous oxide (N2O) emissions. An understanding of the main N2O sources in soils under a particular land can be a useful tool in developing mitigation strategies. To better understand the effect of land-use on N2O emissions, soils were collected from 5 different land-uses in southeast China: shrub land (SB), eucalyptus plantation (ET), sweet potato farmland (SP), citrus orchard (CO) and vegetable growing farmland (VE). A stable isotope experiment was conducted incubating soils from the different land use types at 60% water holding capacity (WHC), using 15NH4NO3 and NH415NO3 to determine the dominant N2O production pathway for the different land-uses. The average N2O emission rates for VE, CO and SP were 5.30, 4.23 and 3.36 μg N kg−1 dry soil d−1, greater than for SB and ET at 0.98 and 1.10 μg N kg−1 dry soil d−1, respectively. N2O production was dominated by heterotrophic nitrification for SB and ET, accounting for 51 and 50% of N2O emissions, respectively. However, heterotrophic nitrification was negligible (<8%) in SP, CO and VE, where autotrophic nitrification was a primary driver of N2O production, accounting for 44, 45 and 66% for SP, CO and VE, respectively. Denitrification was also an important pathway of N2O production across all land-uses, accounting for 35, 35, 49, 52 and 32% for SB, ET, SP, CO and VE respectively. Average N2O emission rates via autotrophic nitrification, denitrification and heterotrophic nitrification increased significantly with gross nitrification rates, NO3− contents and C:N ratios respectively, indicating that these were important factors in the N2O production pathways for these soils. These results contribute to our understanding and ability to predict N2O emissions from different land-uses in subtropical acidic soils and in developing potential mitigation strategies.
Показать больше [+] Меньше [-]Influence of climate change on the multi-generation toxicity to Enchytraeus crypticus of soils polluted by metal/metalloid mining wastes Полный текст
2017
Barmentlo, S Henrik | van Gestel, Cornelis A.M. | Álvarez-Rogel, José | González-Alcaraz, M Nazaret
This study aimed at assessing the effects of increased air temperature and reduced soil moisture content on the multi-generation toxicity of a soil polluted by metal/metalloid mining wastes. Enchytraeus crypticus was exposed to dilution series of the polluted soil in Lufa 2.2 soil under different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) over three generations standardized on physiological time. Generation time was shorter with increasing air temperature and/or soil moisture content. Adult survival was only affected at 30% WHC (∼30% reduction at the highest percentages of polluted soil). Reproduction decreased with increasing percentage of polluted soil in a dose-related manner and over generations. Toxicity increased at 30% WHC (>50% reduction in EC50 in F0 and F1 generations) and over generations in the treatments at 20 °C (40–60% reduction in EC50 in F2 generation). At 25 °C, toxicity did not change when combined with 30% WHC and only slightly increased with 50% WHC. So, higher air temperature and/or reduced soil moisture content does affect the toxicity of soils polluted by metal/metalloid mining wastes to E. crypticus and this effect may exacerbate over generations.
Показать больше [+] Меньше [-]Modelling degradation kinetics of metformin and guanylurea in soil microcosms to derive degradation end-points Полный текст
2019
The degradation of metformin (MET) and guanylurea (GUA) fortified separately in freshly collected two top soils (0–10 cm) from New Zealand's pastoral region was studied under controlled laboratory conditions. Incubation studies were carried at 30 °C under aerobic conditions at 60% of maximum water holding capacity and at two (0.5 mg/kg and 5 mg/kg) nominal soil concentrations. Degradation profiles revealed a bi-phasic pattern of both the compounds with an initial rapid degradation followed by slow dissipation rate, resulting in poor fits by simple first order kinetics. However, the use of three non-linear mathematical models sufficiently described the measured data and well supported by an array of statistical indices to judge model's ability to fit the measured datasets. Further evaluation using box-whisker plots showed that double first-order in parallel (DFOP) and first-order two-compartment (FOTC) models best fitted the data points followed by the Bi-exponential (BEXP) model. Mechanistic assumptions from DFOP and FOTC suggest that degradation of MET and GUA proceeds at two different rates, possibly in two compartments. The calculated DT50 using both models were in the range of 2.7–15.5 days and 0.9–4 days, while 90% dissipation time (DT90) varied between 91 and 123 days and 44 and 137 days for MET and GUA, respectively. Degradation of both compounds were dependent on soil types and properties, incubation conditions and initial substrate concentration. Formation of GUA with decrease in MET concentration over time confirmed that GUA is a transformation product concomitantly formed from aerobic degradation of MET in soil.
Показать больше [+] Меньше [-]The effect of fly ash on plant growth and yield of tomato
1996
Khan, M.R. | Khan, M.W. (Department of Plant Protection, Institute of Agriculture, Aligarh Muslim University, Aligarh 202-002 (India))
Applying the diffusive gradient in thin films method to assess soil mercury bioavailability to the earthworm Eisenia fetida Полный текст
2021
Nguyen, Viet Huu | Seon, Jae-young | Qasim, Ghulam Hussain | Fareed, Hasan | Hong, Yongseok | Han, Seunghee
This study assessed the critical soil characteristics affecting mercury (Hg) bioavailability to the earthworm Eisenia fetida using the diffusive gradient in thin films (DGT) method. The soil samples were collected from a tributary of the Hyeongsan River contaminated with industrial waste and landfill leachates called Gumu Creek. The Hg concentration in the soil had a range of 0.33–170 μg g⁻¹ (average 33 ± 56 μg g⁻¹), and the Hg concentration of earthworms incubated in the soils was 0.83–11 μg g⁻¹ (average 2.9 ± 3.2 μg g⁻¹). When correlation analysis was used to detect the key variables among the soil properties related to Hg accumulation in the soils, earthworms, and resins, the water-holding capacity, which is covaried with the organic matter content, was determined to be a primary factor in increasing Hg accumulation in the soils, earthworms, and resins. However, the experimentally determined earthworm bioaccumulation factor and the DGT accumulation factor were negatively affected by the water-holding capacity. Therefore, the water-holding capacity played a dual role in the Gumu Creek deposits: increasing the soil Hg concentration and decreasing Hg bioavailability and leachability. Further, the DGT–Hg flux was positively correlated with the Hg concentration in earthworms (r = 0.93). Although the earthworm accumulation of Hg is not processed by passive diffusion, this study proves that the DGT method is promising for predicting soil Hg bioavailability to the earthworm E. fetida, and the water-holding capacity simultaneously regulates Hg availability to the DGT and the earthworms.
Показать больше [+] Меньше [-]Influence of elements of climate change on the growth and fecundity of Datura stramonium Полный текст
2020
Chadha, Aakansha | Florentine, Singarayer | Javaid, Muhammad | Welgama, Amali | Turville, Christopher
In this study, the performance of Datura stramonium, an invasive weed of soybean and solanaceous crops, was examined under different elements of climate change. Experiments conducted in CO₂ chambers at ambient CO₂ (400 ppm) and elevated CO₂ (700 ppm) levels under both well-watered and drought conditions exhibited the fertilization effect of elevated CO₂. This was, however, limited by drought. Clearly, growth of D. stramonium will be significantly enhanced by enriched atmospheric CO₂ concentration under well-watered conditions, producing taller plants with greater biomass and higher seed output. Glasshouse experiments were conducted to evaluate the effect of different soil moisture regimes (100%, 75%, 50% and 25% water-holding capacity (WHC)) on the growth and fecundity of D. stramonium. Plants grown in 75% WHC had the highest plant height (15.24 cm) and shoot diameter (4.25 mm). The lowest leaf area (305.91 mm²), fresh weight (14.48 g) and dry weight (4.45 g) were observed in 25% WHC conditions. The ability of D. stramonium plants to grow and complete their life cycle with high seed output, even under limited water availability, shows the weedy nature of this species which is well adapted to survive future inhospitable climatic conditions. Radiant heat treatment on the plants indicated that temperatures of 120 °C and above for more than 180 s were enough to kill the plants, suggesting that thermal weeding or wildfires will be adequate to act as a circuit breaker on the D. stramonium invasion cycle, thus allowing other control measures to be engaged for greater control.
Показать больше [+] Меньше [-]Formation of Pyromorphite and Lead Mobilization in Contaminated Soils Amended with Hydroxyapatite in the Presence of Iron Oxyhydroxide and Water Percolation Полный текст
2016
Katoh, Masahiko | Tsuda, Kenichiro | Matsumoto, Norihiro | Satō, Takeshi
The application of hydroxyapatite (HAP) can transform lead into pyromorphite in the soil. However, it is not clear how the physicochemical properties of soil enhance or reduce the formation of pyromorphite. This study determined that the presence of ferrihydrite or soil moisture condition was a more important factor to enhance the formation of pyromorphite. We also evaluated lead sorption characteristics and stability in soil with HAP in the presence of ferrihydrite. The difference in the maximum lead removal capacity of soil with and without 5 wt% ferrihydrite corresponded to 10.4% of the difference in lead removal between soils with and without HAP. In artificially contaminated soil with a 50% water-holding capacity, the ratio of lead that formed into pyromorphite was compatible between soils with and without ferrihydrite at 22% and 28% of added lead, respectively. In a percolation test, almost all of the added lead was transformed into pyromorphite, despite the presence of ferrihydrite. In both water and a 0.1-M citric acid extraction, the differences in lead extracted from the contaminated soil with HAP with or without ferrihydrite were very small compared with water-soluble lead in soil without HAP. This study indicated that in soil with 5 wt% ferrihydrite, lead was removed and converted into pyromorphite by HAP with a little disturbance by ferrihydrite, and the immobilized lead would be stable. In addition, this study suggested that the soil moisture condition was a more important factor for the formation of pyromorphite than the presence of ferrihydrite.
Показать больше [+] Меньше [-]Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria Полный текст
2016
Oksińska, Małgorzata P. | Magnucka, Elżbieta G. | Lejcuś, Krzysztof | Pietr, Stanisław J.
Chemical cross-linking and the high molecular weight of superabsorbent copolymers (SAPs) are the two main causes of their resistance to biodegradation. However, SAP particles are colonized by microorganisms. For the purposes of this study, the dry technical copolymer of acrylamide and potassium acrylate containing 5.28 % of unpolymerized monomers was wrapped in a geotextile and incubated in unsterile Haplic Luvisol soil as a water absorbing geocomposite. The highest number of soil bacteria that colonized the hydrated SAP and utilized it as the sole carbon and energy source was found after the first month of incubation in soil. It was equal to 7.21–7.49 log₁₀ cfu g⁻¹ of water absorbed by the SAP and decreased by 1.35–1.61 log₁₀ units within the next 8 months. During this time, the initial SAP water holding capacity of 1665.8 g has decreased by 24.40 %. Moreover, the 5 g of SAP dry mass has declined by 31.70 %. Two bacteria, Rhizobium radiobacter 28SG and Bacillus aryabhattai 31SG isolated from the watered SAP were found to be able to biodegrade this SAP in pure cultures. They destroyed 25.07 and 41.85 mg of 300 mg of the technical SAP during the 60-day growth in mineral Burk’s salt medium, and biodegradation activity was equal to 2.95 and 6.72 μg of SAP μg⁻¹ of protein, respectively. B. aryabhattai 31SG and R. radiobacter 28SG were also able to degrade 9.99 and 29.70 mg of 82 mg of the ultra-pure SAP in synthetic root exudate medium during the 30-day growth, respectively.
Показать больше [+] Меньше [-]Characterization and Selection of Packing Materials for Biofiltration of Rendering Odourous Emissions Полный текст
2013
Anet, Benoît | Couriol, Catherine | Lendormi, Thomas | Amrane, Abdeltif | Le Cloirec, Pierre | Cogny, Gilles | Fillières, Romain
Robust and cheap, biofiltration is one of the most used methods for the biological treatment of industrial gaseous odours and VOCs emissions. The chemical, physical and microbial properties, as well as the economical impact of 11 organic and inorganic packing materials potentially suitable for biofiltration, have been investigated in order to select the most relevant for the treatment of rendering gaseous emissions. Fibrous materials such as peat and coconut fibres are predisposed to compaction. Moreover, according to their low expected running period, their implementation remains expensive, such as activated carbon which induce overweening costs (>100,000€ an -1 for the treatment of 40,000 m3 h-1 with a 60-s empty bed gas residence time). Considering economical aspects, physico-chemical and biological properties, pines barks, composted wood mulch and expanded schist seem fit for this application. The performance of these materials was therefore investigated in a pilot-scale study conducted on a rendering site. According to its appropriate pH (8.62) and water-holding capacity (1.41 g g-1) and its highest nutrients content and colonization at the biofilter start-up (93 g of ATP m-3, 29.10 13 CFU m-3), composted would mulch show the best odour removal efficiency during the 134 days of operation. Performances ranged between 75 and 93 % for the treatment of odourous inlet load between 1.16 and 10.10·106 ouE m-3 h-1 with an empty bed gas residence time of 47 s. However, the pressure drop of the compost bed decreased, suggesting structural changes which may impact the performances in the long term. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]