Уточнить поиск
Результаты 1-10 из 323
Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries
2022
Zheng, Dongsheng | Yin, Guoyu | Liu, Min | Hou, Lijun | Yang, Yi | Liu, Xinran | Jiang, Yinghui | Chen, Cheng | Wu, Han
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
Показать больше [+] Меньше [-]Thallium distribution in an estuary affected by acid mine drainage (AMD): The Ría de Huelva estuary (SW Spain)
2022
Cánovas, Carlos Ruiz | Basallote, María Dolores | Macías, Francisco | Freydier, Rémi | Parviainen, Annika | Pérez López, Rafael
This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 μg/L in the Tinto and Odiel estuaries, respectively, to 0.02 μg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 μg/L to 0.02 μg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl⁰ and K⁺ ions, which compete for adsorption sites with Tl⁺ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column.
Показать больше [+] Меньше [-]Multimedia distribution of polycyclic aromatic hydrocarbons in the Wang Lake Wetland, China
2022
Shi, Changhe | Qu, Chengkai | Sun, Wen | Zhou, Jingzhe | Zhang, Jiawei | Cao, Yu | Zhang, Yuan | Guo, J. (Jiahua) | Zhang, Jiaquan | Qi, Shihua
The Wang Lake Wetland is a highly valued area that is protected due to its high biodiversity. The wetland has a complicated hydrological regime and is subject to frequent human disturbance. We hypothesize that fluctuating hydrology and human activities have varied contributions to the temporal and spatial variations of polycyclic aromatic hydrocarbons (PAHs) in the wetland. Soil (SS), sediment (SD), and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM), samples were collected from eight locations during low- and high-flow periods to elucidate multimedia phase distribution and transport of PAHs. Following the onset of the rainy season, the concentration of SPM-associated PAHs increased significantly, while the DP PAHs remained stable. Individual PAH ratios showed that, although pyrogenic sources are common, petrogenic derived compounds are the main source of PAHs in the Wang Lake Wetland. During the high-flow period, the empirical values for logarithms of the organic carbon-normalized partition coefficients (log KOC) of individual PAH-congeners were lower than the corresponding field-observed log KOC values from the SPM-DP and SD-DP systems, reflecting the complexity in evaluating multi-phase PAH partitioning. During the high-flow period, temperature-driven changes may have changed the sediment from a sink to a source for some high molecular weight PAHs. It was determined that human activities governed the PAH loading in the low-flow period, whereas during high-flow conditions, increased rainfall, higher temperatures, and fishery activity are the main factors controlling PAH input to the Wang Lake Wetland.
Показать больше [+] Меньше [-]Seasonal variation in release characteristics and mechanisms of sediment phosphorus to the overlying water in a free water surface wetland, southwest China
2022
Liang, Qibin | Chen, Ting | Wang, Yanxia | Gao, Lei | Hou, Lei
Geochemical cycling of iron (Fe) mediated by sediment microbes drives the remobilization of phosphorus (P). Understanding the underlying mechanism is essential for the evaluation of P retention by wetlands. The diffusive gradients in thin film (DGT) and 16S rDNA sequencing techniques were combined to explore seasonal variations in the remobilization mechanism of sediment P in a free water surface wetland in southwest China. A significantly positive correlation between labile P and Fe concentrations was found from the sediment profiles, indicating coupled remobilization of Fe and P in the sediment. Fe-reducing bacterial genera, particularly Sphingomonas and Geothermobacter, were responsible for the reductive dissolution of Fe oxides and subsequent P release in sediment. The efflux of sediment P was higher in the rainy season (95 ± 87 ng cm⁻² d⁻¹) than in the dry season (39 ± 29 ng cm⁻² d⁻¹). Based on the significantly positive relationship between the efflux and total concentration of sediment P, we propose a promising regression equation for quantifying the release risk of sediment P. The Luoshijiang Wetland exhibited a higher release potential as indicated by a greater regression slope (0.558) compared to the other water bodies (0.055), which was mainly attributed to the lower labile Fe:P molar ratio in the sediment. Based on estimations of the diffusive flux of P at the sediment-water interface, sediment contributed more than 172 and 413 g of P per day to the water column in the dry and rainy seasons, respectively, accounting for 14.0% and 1.9% of the P mass in the surface water of the wetland.
Показать больше [+] Меньше [-]Assessing potential risks of aquatic polycyclic aromatic compounds via multiple approaches: A case study in Jialing and Yangtze Rivers in downtown Chongqing, China
2022
Zhu, Yunxi | Liang, Bo | Xia, Weiwei | Gao, Min | Zheng, Haojun | Chen, Jing | Chen, Yang | Tian, Mi
To better evaluate the potential risks of aquatic polycyclic aromatic compounds (PACs), multiple approaches have been implemented in this study to assess the human health and ecological risks of parent, nitrated and oxygenated polycyclic aromatic hydrocarbons (PAHs, NPAHs and OPAHs) in the surface water of Jialing and Yangtze Rivers in downtown Chongqing in southwestern China. The concentrations of ∑PAHs (334 ± 125 ng L⁻¹) were much higher than those of ∑OPAHs (20.2 ± 7.49 ng L⁻¹) in the two rivers, while NPAHs were barely detected. Concentrations of detected PACs were higher in wet season than dry season, probably resulted from the elevated particle input due to heavy rainfall in wet season. Concentrations of PAHs were higher in the particulate phase than dissolved phase, while OPAHs levels showed a reverse pattern. The partition coefficients (Kₚ) of PACs in the water-SPM (suspended particulate matter) system were mainly affected by SPM concentrations and octanol/water partition coefficients of specific PACs. Human health risks calculated from non-probabilistic risk assessment model and probabilistic risk assessment model based on Monte Carlo simulation showed similar data pattern with slight difference in absolute values. Both models revealed potential or even severe human health risks contributed mainly by dermal exposure to aquatic PACs in this study. Furthermore, these models also manifested that infant stage was highly sensitive for PAC exposure. Sensitivity analysis indicated that health risk results was most sensitive to Benzo[a]pyrene equivalent toxic concentration (BaPₑq), followed by showering time and daily water intake volume. Levels of ecological risks and contributions of individual PACs differed from models based on different quality values. The adequacy of toxicity data was crucial for the reliability of ecological risk assessment.
Показать больше [+] Меньше [-]Farmed tilapia as an exposure route to microcystins in Zaria-Nigeria: A seasonal investigation
2021
Chia, Mathias Ahii | Abdulwahab, Rabiu | Ameh, Ilu | Balogun, J Kolawole | Auta, Jehu
Several studies have reported the contamination of farmed fish by microcystins, however, alternations in levels of contamination resulting from seasonal changes are infrequently described. This investigation is focused on the seasonal accumulation of microcystins in farmed Nile Tilapia muscle tissue across three farms located in Zaria, Nigeria, as a means of assessing the health risks associated with the consumption of contaminated fish. Total microcystins and cyanobacteria content, respectively, in muscle tissue and gut of tilapia varied, seasonally in the farms. Microcystin levels were higher in fish tissues analyzed in the dry season than the rainy season at Nagoyi and Danlami ponds. Correlating with the levels of microcystins found in fish tissues, the highest dissolved microcystins levels in all the fish farms occurred in the dry season, where the Bal and Kol fish farm had the highest concentration (0.265 ± 0.038 μgL⁻¹). Gut analysis of fish obtained from the ponds, revealed a predominance of Microcystis spp. among other cyanobacteria. Estimation of total daily intake of consumed contaminated Nile tilapia muscles reveal values exceeding WHO recommended (0.04 μg kg⁻¹ body weight) total daily intake of MC-LR. Consumption of tilapia from Danlami pond presented the greatest risk with a value of 0.093 μg kg⁻¹ total daily intake. Results of the present study necessitate the implementation of legislation and monitoring programs for microcystins and other cyanobacteria contaminants of fish obtained from farms and other sources in Zaria and indeed several other African countries.
Показать больше [+] Меньше [-]Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health
2021
Liu, Jiutan | Peng, Yuming | Li, Changsuo | Gao, Zongjun | Chen, Shaojie
This study aimed to evaluate the hydrochemistry of the water resources of the Weibei Plain, Northern China, as well as the risks posed by high groundwater nitrate concentrations to human health. Groundwater and surface water samples numbering 168 and 14, respectively, were collected during the dry and wet seasons. Water in the study area was weakly alkaline, falling into a hard-fresh or hard-brackish category. The groundwater chemical types were mainly SO₄·Cl–Ca·Mg (59.5%) and HCO₃–Ca·Mg (28.6%), whereas the dominant chemistry type of surface water was SO₄·Cl–Na (78.6%). Groundwater showed relatively high concentrations of NO₃⁻, with average dry and wet season concentrations of 212 mg·L⁻¹ and 223 mg·L⁻¹, respectively, whereas surface water had a low NO₃⁻ content. The major processes affecting water chemistry were determined to be rock weathering, such as silicate weathering and evaporative dissolution, as well as cation exchange. NO₃⁻ in groundwater was found to mainly originate from anthropogenic inputs such as agricultural production and domestic sewage. The entropy-weight water quality index (EWQI) assessment showed that although the quality of surface water was generally good, more than half of the groundwater samples failed drinking water standards, with NO₃⁻ identified as being the most problematic parameter affecting the water quality evaluation. Risk assessment of high groundwater nitrate concentrations indicated that long-term domestic use of groundwater in the study area can put the health of residents at great risk. Totals of 81% and 75% of the groundwater samples exceeded the acceptable limit for non-carcinogenic risk (HI = 1) to infants during the dry and wet seasons, respectively, whereas 75% and 71.3% of samples exceeded the acceptable limit for children, respectively. Future management of water in the Weibei Plain should prioritize the control groundwater nitrate pollution.
Показать больше [+] Меньше [-]Natural and anthropogenic impacts on the DOC characteristics in the Yellow River continuum
2021
Wen, Zhidan | Song, Kaishan | Shang, Yingxin | Lyu, Lili | Tao, Hui | Liu, Ge
The Yellow River is the second largest river in China. Carbon transport by the Yellow River has significant influence on riverine carbon cycles in Asia. During the wet season, the riverine carbon was mainly found in dissolved form, i.e., dissolved organic carbon (DOC), along the entire course of the river. The distinct spatial variations of DOC concentration were observed at different reaches of the mainstream (p < 0.01), while the highest mean DOC concentration was generally observed at midstream (4.13 ± 0.91 mg/L). Carbon stable isotope analysis δ¹³C and C: N ratio of DOC, evidenced the sources of DOC in headwater and upstream were primarily the terrestrial plants (94% and 61%), but it was changed to soil organic matter (SOM) in mid- and downstream (36% and 37%), and the contribution of sewage to DOC were also increased to 17% and 18%. In the whole mainstream of the Yellow River, water temperature (WT) had a significant impact on DOC concentration, and it could explain 67% of the DOC variance. However, in a large catchment, the driving mechanisms on the DOC variations in headwaters will not necessarily be those controlling DOC trends in downstream. The study firstly quantified, in headwater and upstream, the natural factors explained as much as 65% and 73% of the DOC variations, respectively. In mid- and downstream areas, DOC was significantly influenced by the amount of wastewater discharged by the industry and the use of chemical fertilizers (p < 0.05). These findings may facilitate a better assessment of global riverine carbon cycling and may help to reveal the importance of the balance between development and environmental sustainability with the changing DOC transport features in the Yellow River due to human disturbances.
Показать больше [+] Меньше [-]Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils
2020
Syu, Chien-Hui | Yu, Chih-Han | Lee, Dar-Yuan
Water management such as drainage for creating aerobic conditions is considered to be an adequate method for reducing the accumulation of arsenic (As) in rice grains; however, it is difficult to conduct drainage operations in some areas that experience a lengthy rainy season as well as in soils with poor drainage. In this regard, application of oxygen-releasing compounds (ORCs) may be an alternative method for maintaining aerobic conditions even under flooding in paddy soils. Therefore, a pot experiment was conducted to investigate the effects of application of an ORC, calcium peroxide (CaO₂), on the growth and accumulation of As in rice plants grown in As-contaminated paddy soils. The rice plants were grown in two soils with different characteristics and As levels, and all of the tested soils were treated with 0, 5, 10, and 20 g CaO₂ kg⁻¹. Results revealed that the concentration of As and the distribution of arsenite in the pore water of all tested soils was reduced by CaO₂ application. In addition, the grain yields increased and the concentration of inorganic As in brown rice decreased by 25–45% upon CaO₂ treatment of low-As-level soils (<16 mg kg⁻¹). However, the effect of CaO₂ application on the accumulation of inorganic As in brown rice in As-enriched soils (>78 mg kg⁻¹) could not found in this study, due to the rice plant suffered from serious As phytotoxicity. It suggests that CaO₂ amendment may be suitable for reducing the As concentration of rice grains grown in low-As-level paddy soils, but for As-enriched soils, the proposed CaO₂ application method is not feasible.
Показать больше [+] Меньше [-]Assessment of hydrochemical backgrounds and threshold values of groundwater in a part of desert area, Rajasthan, India
2020
Rahman, Abdur | Tiwari, K.K. | Mondal, N.C.
Natural background levels (NBLs) and threshold values (TVs) are crucial parameters for identification and the quantification of groundwater pollution, and the evaluation of pollution control measures. The cumulative probability distribution technique was used for the evaluation of NBLs for 36 samples collected during two climate conditions in the part of the desert area from Rajasthan, India. The NBLs for Na⁺, Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻ and F⁻ ions were assessed and compared with the natural and anthropogenic processes. The TVs were also calculated for Na⁺, Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻ and F⁻ ions, and compared with the drinking limits of the Bureau of Indian Standards. Additionally, the pollution percentage (%) at the individual well was estimated and identified the polluted zones. Results indicate that most of the polluted areas were situated in the southern part, which was influenced by the natural and anthropogenic factors. The sodium concentrations above the TVs, in indicating the saline nature of water. Chloride threshold value above the drinking water limit was mainly observed in the dry season, related to intensive evaporation and industrial waste, which leads to groundwater quality degradation. The NO₃⁻ concentration (∼56% samples) above the TVs indicates extensive use of nitrate fertilizers and sewage effluent. The values of total dissolved solids (TDS) shows the suspicious scenario as about 84% of the samples in the dry period and about 89% in the wet season exceeding the drinking limit. Assessment of background concentrations and threshold values on regional and local scale assigns the basis for the identification of groundwater pollution, and helpful for better water quality guidelines to protecting of water resources.
Показать больше [+] Меньше [-]