Уточнить поиск
Результаты 1-10 из 55
Phytostabilization of arsenic and associated physio-anatomical changes in Acanthus ilicifolius L
2022
Sarath, Nair G. | Shackira, A.M. | El-Serehy, Hamed A. | Hefft, Daniel Ingo | Puthur, Jos T.
The carcinogenic attribute of arsenic (As) has turned the world to focus more on the decontamination and declining the present level of As from the environment especially from the soil and water bodies. Phytoremediation has achieved a status of sustainable and eco-friendly approach of decontaminating pollutants, and in the present study, an attempt has been made to reveal the potential of As remediation by a halophyte plant, Acanthus ilicifolius L. Special attention has given to analyse the morphological, physiological and anatomical modulations in A. ilicifolius, developed in response to altering concentrations of Na₂AsO₄.7H₂O (0, 70, 80 and 90 μM). Growth of A. ilicifolius under As treatments were diminished as assessed from the reduction in leaf area, root length, dry matter accumulation, and tissue water status. However, the plants exhibited a comparatively higher tolerance index (44%) even when grown in the higher concentrations of As (90 μM). Arsenic treatment induced reduction in the photochemical activities as revealed by the pigment content, chlorophyll stability index (CSI) and Chlorophyll a fluorescence parameter. Interestingly, the thickness and diameter of the xylem walls in the leaf as well as root tissues of As treated samples increased upon increasing the As concentration. The adaptive strategies exhibited by A. ilicifolius towards varying concentrations of As is the result of coordinated responses of morpho-physiological and anatomical attributes, which make the plant a promising candidate for As remediation, especially in wetlands.
Показать больше [+] Меньше [-]Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars
2021
Cheng, Yiran | Yang, Tian | Xiang, Wenhui | Li, Siyu | Fan, Xing | Sha, Lina | Kang, Houyang | Wu, Dandan | Zhang, Haiqin | Zeng, Jian | Zhou, Yonghong | Wang, Yi
High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH₄⁺-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH₄⁺-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH₄⁺-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH₄⁺-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH₄⁺-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH₄⁺-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.
Показать больше [+] Меньше [-]Coordination between root cell wall thickening and pectin modification is involved in cadmium accumulation in Sedum alfredii
2021
Guo, Xinyu | Luo, Jipeng | Du, Yilin | Li, Jinxing | Liu, Yuankun | Liang, Yongchao | Li, Tingqiang
Root cell wall (RCW) modification is a widespread important defense strategy of plant to cope with trace metals. However, mechanisms underlying its remolding in cadmium (Cd) accumulation are still lacking in hyperaccumulators. In this study, changes of RCW structures and components between nonhyperaccumulating ecotype (NHE) and hyperaccumulating ecotype (HE) of Sedum alfredii were investigated simultaneously. Under 25 μM Cd treatment, RCW thickness of NHE is nearly 2 folds than that of HE and the thickened cell wall of NHE was enriched in low-methylated pectin, leading to more Cd trapped in roots tightly. In the opposite, large amounts of high-methylated pectin were assembled around RCW of HE with Cd supply, in this way, HE S. alfredii decreased its root fixation of Cd and enhanced Cd migration into xylem. TEM and AFM results further confirmed that thickened cell wall was caused by the increased amounts of cellulose and lignin while root tip lignification was resulted from variations of sinapyl (S) and guaiacyl (G) monomers. Overall, thickened cell wall and methylated pectin have synchronicity in spatial location of roots, and their coordination contributed to Cd accumulation in S. alfredii.
Показать больше [+] Меньше [-]Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand
2010
Nunn, A.J. | Cieslik, S. | Metzger, U. | Wieser, G. | Matyssek, R.
Stomatal O3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O3 flux was 33% of the total O3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O3 flux and reflected stomatal regulation rather than O3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O3 risk assessment in forests from O3 exposure towards flux-based concepts.
Показать больше [+] Меньше [-]The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics
2020
Qi, Xiaoli | Tam, Nora Fung-yee | Li, Wai Chin | Ye, Zhihong
The radial translocation of cadmium (Cd) from the root to the shoot is one of the major processes affecting Cd accumulation in rice (Oryza sativa L.) grains, but few studies have focused on Cd apoplastic transport in rice. The aim of this study was to determine how apoplastic barriers affect Cd translocation via the apoplastic pathway, Cd accumulation levels in upper parts (shoot and grains) of rice cultivars, and the possible mechanism involved. Hydroponic and soil pot trials were conducted to study the development and chemical constituents of apoplastic barriers and their permeability to bypass flow, and to determine Cd localization in the roots of rice cultivars with different Cd-accumulating characteristics. The Cd accumulation in upper parts was positively correlated with bypass flow in the root and the apparent Cd concentration in the xylem, indicating that the apoplastic pathway may play an important role in Cd root-shoot translocation in rice. Apoplastic barriers were deposited closer to the root tip and were thicker in low Cd-accumulating cultivars than in high Cd-accumulating cultivars. The amounts and rates of increase in lignin and suberin were significantly higher in ZD14 (a low Cd-accumulating cultivar) than in FYXZ (a high Cd-accumulating cultivar) under Cd stress, indicating that stronger barriers were induced by Cd in ZD14. The stronger and earlier formation of barriers in the low Cd-accumulating cultivar decreased bypass flow more efficiently, so that more Cd was retained in the root during apoplastic translocation. This was confirmed by localization analyses of Cd in root transverse sections. These results suggest that apoplastic barriers reduce Cd root-to-shoot translocation via the apoplastic pathway, leading to lower Cd accumulation in the upper parts of rice plants. Bypass flow may have the potential to be used as a rapid screening indicator for low Cd-accumulating rice cultivars.
Показать больше [+] Меньше [-]A comparative study of root cadmium radial transport in seedlings of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation
2020
Liu, Yuankun | Lu, Min | Tao, Qi | Luo, Jipeng | Li, Jinxing | Guo, Xinyu | Liang, Yongchao | Yang, Xiaoe | Li, Tingqiang
The radial transport of cadmium (Cd) is essential for Cd influx in roots. The role of radial transport pathway on the Cd translocation from root to shoot among wheat genotypes are still poorly understood. This study explored the role of apoplastic and symplastic pathway on root Cd uptake and root-to-shoot translocation in Zhenmai 10 (ZM10, high Cd in grains) and Aikang 58 (AK58, low Cd in grains). Under Cd treatment, the deposition of Casparian strips (CSs) and suberin lamellae (SL) initiated closer to the root apex in ZM10 than that in AK58, which resulted in the lower Cd concentration in apoplastic fluid of ZM10. Simultaneously, Cd-induced expression levels of genes related to Cd uptake in roots were significantly higher in AK58 by contrast with ZM10, contributing to the symplastic Cd accumulation in AK58 root. Moreover, the addition of metabolic inhibitor CCCP noticeably decreased the Cd accumulation in root of both genotypes. Intriguingly, compared to ZM10, greater amounts of Cd were sequestrated in the cell walls and vacuoles in roots of AK58, limiting the translocation of Cd from root to shoot. Furthermore, the elevated TaHMA2 expression in ZM10 indicates that ZM10 had a higher capacity of xylem loading Cd than AK58. All of these results herein suggest that the radial transport is significant for Cd accumulation in roots, but it cannot explain the difference in root-to-shoot translocation of Cd in wheat genotypes with contrast Cd accumulation in grains.
Показать больше [+] Меньше [-]Acropetal translocation of phenanthrene in wheat seedlings: Xylem or phloem pathway?
2020
Due to the potential toxicity of polycyclic aromatic hydrocarbons (PAHs) to humans, the uptake and translocation of PAHs in food crops have gained much attention. However, it is still unclear whether phloem participates in the acropetal translocation of PAHs in plants. Herein, the evidence for acropetal translocation of phenanthrene (a model PAH) via phloem is firstly tested. Wheat (Triticum aestivum L.) new leaves contain significantly higher phenanthrene concentration than old leaves (P < 0.05), and the inhibitory effect on phenanthrene translocation is stronger in old leaves after abscisic acid and polyvinyl alcohol (two common transpiration inhibitors) application. Phenanthrene concentration in xylem sap is slightly higher than in phloem sap. Ring-girdling treatment can significantly reduce phenanthrene concentration in castor bean (Ricinus communis L.) leaves. Two-photon fluorescence microscope images indicate a xylem-to-phloem and acropetal phloem translocation of phenanthrene in castor bean stem. Therefore, phloem is involved in the acropetal translocation of phenanthrene in wheat seedlings, especially when the xylem is not mature enough in scattered vascular bundle plants. Our results provide a deeper understanding of PAH translocation in plants, which have significant implications for food safety and phytoremediation enhancement of PAH-contaminated soil and water.
Показать больше [+] Меньше [-]Retrospective study of methylmercury and other metal(loid)s in Madagascar unpolished rice (Oryza sativa L.)
2015
Rothenberg, Sarah E. | Mgutshini, Nomathamsanqa L. | Bizimis, Michael | Johnson-Beebout, Sarah E. | Ramanantsoanirina, Alain
The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n = 51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p < 0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n = 20) and brown bran (n = 31) (Wilcoxon rank sum, p = 0.06–0.91). Compared to all elements in rice, rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson's r = 0.33, p < 0.05) and total mercury (r = 0.44, p < 0.05), while strontium (i.e., tracer for xylem transport) was least correlated with total mercury and methylmercury (r < 0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem.
Показать больше [+] Меньше [-]Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules
2022
Mukarram, Mohammad | Petrik, Peter | Mushtaq, Zeenat | Khan, M. Masroor A. | Gulfishan, Mohd | Lux, Alexander
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca²⁺, K⁺, Na⁺, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
Показать больше [+] Меньше [-]Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review
2021
Khan, Imran | Awan, Samrah Afzal | Rizwan, Muhammad | Ali, Shafaqat | Zhang, Xinquan | Huang, Linkai
Arsenic (As) is one of the most toxic and cancer-causing metals which is generally entered the food chain via intake of As contaminated water or food and harmed the life of living things especially human beings. Therefore, the reduction of As content in the food could be of great importance for healthy life. To reduce As contamination in the soil and food, the evaluation of plant-based As uptake and transportation mechanisms is critically needed. Different soil factors such as physical and chemical properties of soil, soil pH, As speciation, microbial abundance, soil phosphates, mineral nutrients, iron plaques and roots exudates effectively regulate the uptake and accumulation of As in different parts of plants. The detoxification mechanisms of As in plants depend upon aquaporins, membrane channels and different transporters that actively control the influx and efflux of As inside and outside of plant cells, respectively. The xylem loading is responsible for long-distance translocation of As and phloem loading involves in the partitioning of As into the grains. However, As detoxification mechanism based on the clear understandings of how As uptake, accumulations and translocation occur inside the plants and which factors participate to regulate these processes. Thus, in this review we emphasized the different soil factors and plant cell transporters that are critically responsible for As uptake, accumulation, translocation to different organs of plants to clearly understand the toxicity reasons in plants. This study could be helpful for further research to develop such strategies that may restrict As entry into plant cells and lead to high crop yield and safe food production.
Показать больше [+] Меньше [-]