Уточнить поиск
Результаты 11-20 из 78
Diuron mobility through vineyard soils contaminated with copper
2005
Jacobson, Astrid R. | Dousset, Sylvie | Guichard, Nathalie | Baveye, Philippe | Andreux, Francis | Microbiologie ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB) | Department of Crop and Soil Sciences ; Cornell University [New York] | Université de Bourgogne (UB)
International audience | The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17–509 mg kg−1 total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1–0.45%) than from the bare-soil columns (0.02–0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98–1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8–1042 μg) than in the calcareous soils (9.5–63.4 μg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils. Cu accumulation, from Bordeaux mixture, in vineyard soils may be affecting microbial activity and thus slightly increasing the persistence of diuron in the soils. Cu accumulation, from Bordeaux mixture, in vineyard soils may be affecting microbial activity and thus slightly increasing the persistence of diuron in the soils.
Показать больше [+] Меньше [-]The Elbe flood 2002-toxic effects of transported contaminants in flatfish and mussel of the Wadden Sea
2005
Einsporn, Sonja | Broeg, Katja | Köhler, Angela
The EU-project ERAPharm - Incentives for the further development of guidance documents?
2005
Knacker, T. | Duis, K. | Ternes, T. | Fenner, Kathrin | Escher, B. | Schmitt, Herve | Römbke, J. | Garric, Jeanne | Hutchinson, T. | Boxall, A.B.A. | ECT OEKOTOXIKOLOGIE GMBH FLORSHEIM / MAIN DEU ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | BUNDESANSTALT FUR GEWASSERKUNDE KOBLENZ DEU ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Swiss Federal Institute of Aquatic Science and Technology [Dübendorf] (EAWAG) | RIVM BILTHOVEN NLD ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Biologie des écosystèmes aquatiques (UR BELY) ; Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF) | ASTRAZENECA R/D GLOBAL SAFETY ASSESSMENT SODERTALJE SWE ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CENTRAL SCIENCE LABORATORY YORK GBR ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]MA [TR1_IRSTEA]QSA / EXPER | International audience | Triggered by the detection of a large variety of pharmaceuticals in surface waters, soils and groundwaters across the world (e.g. Halling- Sørensen et al. 1998, Daughton & Ternes 1999, Jones et al. 2001, Heberer 2002) and the widespread occurrence of endocrine active compounds and related effects in the environment (e.g. Purdom et al. 1994, Tyler et al. 1998, Vethaak et al. 2002), pharmaceuticals in the environment have become an issue for both the scientific and the public community. During the last few years, our understanding of the fate and effects of pharmaceuticals in the environment has progressed significantly. However, there are still a number of uncertainties concerning the effects of pharmaceuticals on the environment and the assessment of potential exposure (e.g. Hanisch et al. 2004, Salomon 2005). These uncertainties will be addressed by the EU-project'Environmental risk assessment of pharmaceuticals' (ERAPharm). This project, a specific targeted research project, is carried out within the priority 'Global change and ecosystems' of the 6th framework programme of the European Union. ERAPharm has started on 1st October 2004; the project duration is three years.
Показать больше [+] Меньше [-]Résumé du 6th International Symposium on Plant Responses to Air Pollution and Glkobal Changes : from molecular Biology to Plant Production and Ecosystem (6th APGC Symposium). Tsukuba 19-22 october 2004
2005
Le Thiec, Didier,
Effets de l'ozone sur les plantes : comparaison entre peuplier et maïs
2005
Le Thiec, Didier, | Jolivet, Yves, | Cellier, Pierre | Dizengremel, Pierre,
Impacts sur les écosystèmes
2005
Cellier, Pierre | Garrec, J.P. | Brignon, J.M. | Jacquemoud, Stéphane | Unité de recherches en bioclimatologie ; Institut National de la Recherche Agronomique (INRA) | P. Ebner (Editeur) | Y. Le Moullec (Editeur) | A. Weill (Editeur)
chap. 7 | National audience
Показать больше [+] Меньше [-]Distribution of silver in mussels and oysters along the French coasts: Data from the national monitoring program
2005
Chiffoleau, Jean-francois | Auger, Dominique | Roux, Nathalie | Rozuel, Emmanuelle | Santini, Anne
Distribution and behavior of many trace elements in the aquatic environment has been well characterized, but little is known about silver (Ag) concentrations in coastal waters, even though this element ranks among the most toxic to marine invertebrates (Calabrese et al., 1977 ; Fisher and Hook, 1997 ; Webb and Wood, 1998). Studies conducted by Flegal et al. (1995), River-Duarte et al. (1999), and Ndung'u et al. (2001), provided the first valuable data on Ag distribution in the oceanic environment, indicating that this element is found in very low concentrations in the dissolved phase. However, although silver concentrations in coastal waters do not reach the nanomolar range (Smith and Flegal, 1993 ; Squire et al., 2002), formation of a stable chloro complex enhances bioavailability and toxicity to biota (Luoma et al., 1995). Experimental studies have shown that Ag is toxic to some living organisms at environmentally realistic levels (Bryan and Langston, 1992). Silver found in the aquatic environment mainly originates in effluents from sewage treatment plants (Rozan and Hunter, 2001). Silver can therefore be used as a tracer of wastewater discharges in coastal waters (Martin et al., 1988 ; Sañudo-Wilhelmy and Flegal, 1992), for instance through the use of sentinel organisms, which concentrate bioavailable contaminants in their tissues (Stephenson and Leonard, 1994 ; Jiann and Presley, 1997 ; Riedel et al., 1998 ; Muñoz-Barbosa et al., 2000). This study concerns biological monitoring as a means of providing a synoptic view of silver contamination in French coastal waters. The National Network for the Observation of Marine Environment Quality (RNO, the French Mussel-Watch) which has been regularly measuring concentrations of various chemical contaminants in oyster and mussel tissues for 25 years (Claisse, 1989), has been monitoring silver levels since 2003. This valuable database including data collected at 80 sampling sites distributed along the French coasts (Fig. 1), is used as a reference to provide the spatial distribution of a given contaminant (Chiffoleau and Bonneau, 1994), identify trends of contamination/decontamination (Chiffoleau et al., 2001), and detect peak concentrations due to accidental events (Chiffoleau et al., 2004). Mussels (Mytilus edulis and Mytilus galloprovincialis) and oysters (Crassostrea gigas) are collected twice a year in February and November. Sample collection (size of samples, size of animals) and treatment (cleaning, depuration, removal of soft parts from the shells, draining, homogenization, and freeze-drying) are performed according to the OSPAR Convention guidelines and the method described by Claisse (1989).
Показать больше [+] Меньше [-]Effets de l'ozone sur les plantes : comparaison entre peuplier et maïs
2005
Le Thiec, Didier | Jolivet, Yves, Y. | Cellier, Pierre | Dizengremel, Pierre, P. | Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
National audience
Показать больше [+] Меньше [-]Pesticide contamination of the coastline of Martinique
2005
Bocquene, Gilles | Franco, Alain
In January and February 2002, the presence of certain agricultural pesticides throughout the coastline of the Caribbean island of Martinique was investigated. The tropical climate of the French West Indies is suitable for banana production, which requires intensive use of pesticides. An inventory of all pesticides used on the island (compounds and tonnage) was compiled. Surveys and analyses revealed the presence of pesticides in the plumes of seven rivers. The organochlorine chlordecone and metabolites of aldicarb were detected at nearly all of the monitored sites, even though the use of chlordecone has been prohibited since 1993. Two triazines (ametryn and simazine) were also identified. The concentrations of carbamates and triazines detected in the water and sediment samples from Martinique are comparable to those reported for mainland France. Chlordecone concentrations in the sediment and particulate matter samples were, however, particularly high in the samples from Martinique. Toxicological implications are discussed. Of particular concern are the high levels of chlordecone (which is bioaccumulating and carcinogenic) and further monitoring of this compound is recommended, especially in fish and other sea-food products.
Показать больше [+] Меньше [-]