Уточнить поиск
Результаты 1021-1030 из 1,956
Microbial Decolorization of an Azo Dye Reactive Black 5 Using White-Rot Fungus Pleurotus eryngii F032 Полный текст
2013
Hadibarata, Tony | Adnan, Liyana Amalina | Yusoff, Abdull Rahim Mohd | Yuniarto, Adhi | Rubiyatno, | Zubir, Meor Mohd Fikri Ahmad | Khudhair, Ameer Badr | Teh, Zee Chuang | Naser, M Abu
The growth of white-rot fungus Pleurotus eryngii F032 in a suitable medium can degrade an azo dye Reactive Black 5 (RB5), because of its ability to produce ligninolytic enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase that able to degrade and transform the complex structure of the dye into a less toxic compound. The effect of environmental factors such as initial concentration of Reactive Black 5, pH, temperature of growth medium, surfactant (Tween 80), and agitation were also investigated. The productions of ligninolytic enzymes were enhanced by increasing the white-rot fungi growth in optimum conditions. The decolorization of Reactive Black 5 were analyzed by using UV–vis spectrophotometer at the maximum absorbance of 596 nm. The white-rot fungus, P. eryngii F032 culture exhibited 93.56 % decolorization of 10 mg/L RB5 within 72 h of incubation in dark condition with agitation. The optimum pH and temperature for the decolorizing activity was recorded at pH 3 and 40 °C, respectively. The addition of surfactant (Tween 80) increased the decolorization to 93.57 % and agitation of growth medium at 120 rpm enhanced the distribution of nutrients to the fungus thus optimized the enzymatic reaction that resulted maximum decolorization of RB5 which was 93.57 %. The molecular docking studies were performed using Chimera visualization software as to analyze the decolorization mechanism of RB5 at molecular level.
Показать больше [+] Меньше [-]Decolorization and Degradation of Reactive Dye in Aqueous Solution by Ozonation in a Semi-batch Bubble Column Reactor Полный текст
2013
Turhan, Kadir | Ozturkcan, S Arda
The decolorization and degradation of anionic sulphonated azo dye (Reactive orange 16 (RO16)), which is suspected to be carcinogenic, were investigated using ozone. The decolorization process of the reactive dye was carried out by bubbling ozone at the bottom of a bubble column reactor containing the dye solution. The effect of pH, reaction time, dye concentration, ozone concentration, and decolorization time was studied. Also, degradation products and possible degradation mechanism were investigated. The results showed that ozonation was a highly effective way to remove color from wastewater. The color of a synthetic waste solution containing water-soluble reactive dye was reduced to 69.69 % under the basic condition (pH 12), with complete RO16 degradation occurring in 8 min. Ozone consumption continued for a further 16 min after which time most of the degradation reactions were complete. Kinetic studies showed that direct ozonation of the aqueous dyes represented a pseudo-first-order reaction with respect to the dye. The apparent rate constant increased with both the applied ozone dose and higher pH values and declined logarithmically with the initial dye concentration. Intermediates such as 6-acetylamino-3-aminonaphthalene-2-sulfonic acid, 2-(4-nitrosophenyl) sulfonylethyl hydrogen sulfate, and 6-acetamido-4-hydroxy-3-nitroso naphthalene-2-sulfonic acid were detected by gas chromatograph coupled with mass spectrometry in the absence of pH buffer, while nitrate and sulfate ions and formic, acetic, and oxalic acids were detected by ion chromatography.
Показать больше [+] Меньше [-]The use of Leaf Characteristics of Common Oak (Quercus Robur L.) to Monitor Ambient Ammonia Concentrations Полный текст
2013
Wuytack, Tatiana | Verheyen, Kris | Wuyts, Karen | Adriaenssens, Sandy | Staelens, Jeroen | Samson, Roeland
Biomonitoring of atmospheric ammonia (NH₃) concentrations is generally performed with epiphytic lichens, using species’ abundances and/or nitrogen concentration as monitoring tools. However, the potential of leaf characteristics of trees to monitor the atmospheric NH₃ concentration has remained largely unexplored. Therefore, we performed a passive biomonitoring study with common oak (Quercus robur L.) at 34 sampling locations in the near vicinity of livestock farms, located in Flanders (northern Belgium). We aimed at evaluating the potential of specific leaf area, leaf area fluctuating asymmetry, stomatal resistance, and chlorophyll content of common oak to monitor a broad range of NH₃ concentrations (four-monthly average of 1.9–29.9 μg m⁻³). No significant effects of ambient NH₃ concentration on the abovementioned leaf characteristics were revealed. Probably, differences in climate, soil characteristics, and concentrations of other air pollutants and/or genotypes confounded the influence of NH₃. Consequently, this study demonstrates the inability of using these morphological, anatomical, and physiological common oak leaf characteristics to monitor ambient NH₃ concentration.
Показать больше [+] Меньше [-]Rewetting Drained Peat Meadows: Risks and Benefits in Terms of Nutrient Release and Greenhouse Gas Exchange Полный текст
2013
van de Riet, B. P. | Hefting, M. M. | Verhoeven, J. T. A.
Rewetting of agriculturally used peatlands has been proposed as a measure to stop soil subsidence, conserve peat and rehabilitate ecosystem functioning. Unintended consequences might involve nutrient release and changes in the greenhouse gas (GHG) balance towards CH₄-dominated emission. To investigate the risks and benefits of rewetting, we subjected soil columns from drained peat- and clay-covered peatlands to different water level treatments: permanently low, permanently inundated and fluctuating (first inundated, then drained). Surface water and soil pore water chemistry, soil-extractable nutrients and greenhouse gas fluxes were measured throughout the experiment. Permanent inundation released large amounts of nutrients into pore water, especially phosphorus (up to 11.7 mg P-PO₄ l⁻¹) and ammonium (4.8 mg N-NH₄ l⁻¹). Phosphorus release was larger in peat than in clay soil, presumably due to the larger pool of iron-bound phosphorus in peat. Furthermore, substantial amounts of phosphorus and potassium were exported from the soil matrix to the surface water, risking the pollution of local species-rich (semi-)aquatic ecosystems. Rewetting of both clay and peat soil reduced CO₂ emissions. CH₄ emissions increased, but, in contrast to the expectations, the fluxes were relatively low. Calculations showed that rewetting reduced net cumulative GHG emissions expressed as CO₂ equivalents.
Показать больше [+] Меньше [-]Removal Processes for Tributyltin During Municipal Wastewater Treatment Полный текст
2013
Scrimshaw, M. D. | Hala, D. | Okiemute, A. E. | Cartmell, E. | Lester, J. N.
The fate and behaviour of tributyltin (TBT) at two wastewater treatment works was examined. Both sites had two inlet streams, and each utilised high rate biological filters (biofilters) on one the streams, before treatment of the combined flows on trickling filters, with one having additional tertiary processes, installed to remove ammonia and solids. The study was designed to determine if these processes enhanced the removal of TBT. Degradation of TBT was observed in one of the biofilters, possibly as a result of temperature and hydraulic loading. At the treatment works with tertiary processes, the mass flux showed the overall removal of TBT was 68 %, predominantly due to removal with solids in the primary settlement processes. However, overall removal of 95 % was observed in the conventional trickling filter works with 94 % of this due to biodegradation in the trickling filter. The two works both removed TBT, but at different treatment stages and by different processes. Differences in the form (solubility) of TBT in the influent may have attributed to this, although further understanding of factors controlling degradation would allow for a more complete assessment of the potential of biological processes to remove hazardous compounds from wastewaters.
Показать больше [+] Меньше [-]Acid Mine Drainage Treatment Assisted by Lignite-Derived Humic Substances : Metal Removal and Speciation Modelling Полный текст
2013
Olds, William E. | Tsang, Daniel C. W. | Weber, Paul
Acid mine drainage (AMD) generated by some coal mines in New Zealand is currently treated by the addition of alkaline reagents which neutralize acidity, triggering the precipitation of dissolved metals as insoluble hydroxides. Some trace metals (Ni, Zn, Cu, Cd, and Pb) are discharged into receiving water bodies due to incomplete hydroxide precipitation at circum-neutral pH. This study investigated the incorporation of lignite-derived humic substances (HS) for metal complexation and removal during AMD treatment by Ca(OH)₂ and CaCO₃ neutralization. For Ca(OH)₂ neutralization, addition of HS (regardless of dosing sequence) enhanced the removal of Zn, Cu, and Cd, probably due to the incorporation of metal–humate complex into settling flocs (via aggregation, co-precipitation, and adsorption) that were subsequently removed by sedimentation. However, additional removal of Ni and Pb was statistically indeterminate, which was ascribed to the low complexation affinity of Ni and high removal of Pb by adsorption onto Fe/Al hydroxides. Conversely, for CaCO₃ neutralization, addition of HS only marginally enhanced Cd removal, with the removal of metals probably dominated by adsorption onto the abundant undissolved calcite. Equilibrium speciation modelling showed that about 25% and 38% of the remaining Cu and Pb in the treated AMD were complexed with HS, while only 5% of remaining Cd and less than 1 wt% of remaining Ni and Zn were organically complexed. In the AMD-receiving water bodies, about 20 mg l⁻¹ of HS would be required for complete complexation (>95%) of Cu and Pb and 50 mg l⁻¹ for Cd, whereas Zn and Ni complexation would not occur at natural stream HS concentrations.
Показать больше [+] Меньше [-]Riverine Flux of Metals from Historically Mined Orefields in England and Wales Полный текст
2013
Mayes, W. M. | Potter, H. A. B. | Jarvis, A. P.
The flux of metals at the tidal limits of major rivers are an important metric of freshwater contaminant transfer to marine habitats, reported in Northeast Atlantic bordering countries under the 1992 Oslo-Paris (OSPAR) Convention. This paper presents an assessment of long-term OSPAR data for four trace metals (Cd, Cu, Pb, and Zn) using a range of spatial datasets to assess the broad distribution of metal flux and yield across England and Wales. Mine site records and geological and land use data are used to classify river basins into six classes. The bulk of metal flux to seas around England and Wales occurs from catchments containing extensive mineralization and a legacy of metal mining (52 % of the total Zn flux, 47 % of Pb, 39 % of Cu, and 48 % of Cd were associated with mined catchments). Catchment area, metal flux from point mine discharges at source, and extent of mineralization typically accounted most for variation in catchment outlet metal flux in stepwise multiple linear regression (SMLR). There are a number of small mining-impacted rural catchments contributing significant fluxes of metals to coastal waters. Of particular prominence are Restronguet Creek (drainage area 87 km²) in southwest England that discharges 176 t Zn/year and 18 t Cu/year and the Afon Goch Dulas (27 km²) in north Wales, which releases 20 t Zn/year and 9 t Cu/year. Although such exercises cannot directly determine the provenance of metals, comparison with metal release data and a review of catchment-scale studies suggest a critical role of mining-related contaminants in contributing to catchment metal export.
Показать больше [+] Меньше [-]Distribution and Risk Assessment of Pharmaceutical Compounds in River Sediments from Doñana Park (Spain) Полный текст
2013
Camacho-Muñoz, D. | Martin, J. | Santos, J. L. | Aparicio, I. | Alonso, E.
The occurrence of 16 pharmaceutical compounds in river sediments from Donana National Park was investigated, as well as the ecotoxicological risk to the ecosystems of this well-known protected zone. Eight of the 16 pharmaceuticals were present in sediments. The highest concentrations in river sediments concern to diclofenac, salicylic acid and caffeine (52.1, 27.2 and 25.4 mu g/kg dm). Naproxen, carbamazepine, propranolol, 17 beta-estradiol and estriol were the other pharmaceutical compounds detected in sediment samples. The relation between the concentration of these pharmaceutical compounds in sediments and river water in contact with was also investigated. While some compounds were detected exclusively in sediment samples (diclofenac, 17 beta-estradiol and estriol), others were detected only in surface waters in contact with (ibuprofen, ketoprofen and gemfibrozil). The outcome analyses of the ecotoxicological risk assessment showed that the presence of all studied pharmaceutical compounds involved a high toxicological risk at short and long term to Donana ecosystem.
Показать больше [+] Меньше [-]Acute Toxicity of Copper Sulfate and Potassium Dichromate on Stygobiont Proasellus: General Aspects of Groundwater Ecotoxicology and Future Perspectives Полный текст
2013
Reboleira, Ana Sofia P. S. | Abrantes, Nelson | Oromí, Pedro | Gonçalves, Fernando
Karst systems harbor large groundwater resources for human consumption and represent an important habitat for rare and unprotected specialized animals, the so-called stygofauna. Due to the highly adapted features towards underground life, together with the geographic isolation provided by the subterranean aquifers, groundwater-dwelling animals may lose the ability to face sudden changes on their ecosystems, and therefore the risk of extinction is remarkably high. A little is known about their sensitiveness, especially linked to contamination pressure in urbanized karst areas. Understanding the impact of contaminants on stygofauna is important for setting groundwater environmental quality and management of karst systems. We have investigated acute toxicity responses in two endemic stygobiont species of the peri-Mediterranean genus Proasellus from two different karst areas and in freshwater standard species Daphnia magna exposed to two contaminants (copper sulfate; potassium dichromate). Groundwater from both sites was characterized in order to depict possible responses resulting from the long-term exposition of organisms to contaminants. Stygobiont Proasellus spp. were remarkably more tolerant than the epigean D. magna. The less groundwater-adapted revealed to be more tolerant to acute exposure to both toxics, suggesting that the degree of adaptation to groundwater life can influence the acute response of Proasellus spp. to pollutants, and that the tolerance to wide environmental conditions could be a key factor in groundwater colonization. This study highlights the worldwide need to use local specimens to infer the effects of pollution in their corresponding karst systems, which is important to define specific environmental quality thresholds for groundwater ecosystems that will certainly contribute for its protection.
Показать больше [+] Меньше [-]Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices Полный текст
2013
Liang, X.Q. | Chen, Y.X. | Nie, Z.Y. | Ye, Y.S. | Liu, J. | Tian, G.M. | Wang, G.H. | Tuong, T.P.