Уточнить поиск
Результаты 1031-1040 из 5,143
Tracking pollutants in dietary fish oil: From ocean to table
2018
Sun, Sheng-Xiang | Hua, Xue-Ming | Deng, Yun-Yun | Zhang, Yun-Ni | Li, Jia-Min | Wu, Zhao | Limbu, Samwel Mchele | Lu, Da-Sheng | Yin, Hao-Wen | Wang, Guo-Quan | Waagbø, Rune | Frøyland, Livar | Tiu, Cheryl | Du, Zhen-Yu
Dietary fish oil used in aquafeed transfers marine pollutants to farmed fish. However, the entire transfer route of marine pollutants in dietary fish oil from ocean to table fish has not been tracked quantitatively. To track the entire transfer route of marine pollutants from wild fish to farmed fish through dietary fish oil and evaluate the related human health risks, we obtained crude and refined fish oils originating from the same batch of wild ocean anchovy and prepared fish oil-containing purified aquafeeds to feed omnivorous lean Nile tilapia and carnivorous fatty yellow catfish for eight weeks. The potential human health risk of consumption of these fish was evaluated. Marine persistent organic pollutants (POPs) were concentrated in fish oil, but were largely removed by the refining process, particularly dioxins and polychlorinated biphenyls (PCBs). The differences in the POP concentrations between crude and refined fish oils were retained in the fillets of the farmed fish. Fillets fat content and fish growth were positively and negatively correlated to the final POPs deposition in fillets, respectively. The retention rates of marine POPs in the final fillets through fish oil-contained aquafeeds were 1.3%–5.2%, and were correlated with the POPs concentrations in feeds and fillets, feed utilization and carcass ratios. The dietary crude fish oil-contained aquafeeds are a higher hazard ratio to consumers. Prohibiting the use of crude fish oil in aquafeed and improving growth and feed efficiency in farmed fish are promising strategies to reduce health risks originating from marine POPs.
Показать больше [+] Меньше [-]Ambient fine and coarse particles in Japan affect nasal and bronchial epithelial cells differently and elicit varying immune response
2018
Onishi, Toshinori | Honda, Akiko | Tanaka, Michitaka | Chowdhury, Pratiti H. | Okano, Hitoshi | Okuda, Tomoaki | Shishido, Daiki | Terui, Yoshihiro | Hasegawa, Shuichi | Kameda, Takayuki | Tohno, Susumu | Hayashi, Masahiko | Nishita-Hara, Chiharu | Hara, Keiichiro | Inoue, Kozo | Yasuda, Makoto | Hirano, Shigeru | Takano, Hirohisa
Ambient particulate matter (PM) epidemiologically exacerbates respiratory and immune health, including allergic rhinitis (AR) and bronchial asthma (BA). Although fine and coarse particles can affect respiratory tract, the differences in their effects on the upper and lower respiratory tract and immune system, their underlying mechanism, and the components responsible for the adverse health effects have not been yet completely elucidated. In this study, ambient fine and coarse particles were collected at three different locations in Japan by cyclone technique. Both particles collected at all locations decreased the viability of nasal epithelial cells and antigen presenting cells (APCs), increased the production of IL-6, IL-8, and IL-1β from bronchial epithelial cells and APCs, and induced expression of dendritic and epithelial cell (DEC) 205 on APCs. Differences in inflammatory responses, but not in cytotoxicity, were shown between both particles, and among three locations. Some components such as Ti, Co, Zn, Pb, As, OC (organic carbon) and EC (elemental carbon) showed significant correlations to inflammatory responses or cytotoxicity. These results suggest that ambient fine and coarse particles differently affect nasal and bronchial epithelial cells and immune response, which may depend on particles size diameter, chemical composition and source related particles types.
Показать больше [+] Меньше [-]Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test
2018
Turner, Andrew
Samples of plastic collected from two beaches in southwest England (n = 185) have been analysed by XRF spectrometry for elements that are hazardous or restricted in synthetic polymers (namely, As, Ba, Br, Cd, Cr, Hg, Pb, Sb and Se). Overall, one or more restricted element was detected in 151 samples, with 15 cases exhibiting non-compliance with respect to the Restriction of Hazardous Substances (RoHS) Directive. Twelve plastics that were RoHS-non-compliant were subsequently processed into microplastic-sized fragments and subjected to an avian physiologically-based extraction test (PBET) that simulates the chemical conditions in the gizzard-proventriculus of the northern fulmar. Kinetic profiles of metal and metalloid mobilisation in the PBET were fitted using a pseudo-first-order diffusion model with rate constants ranging from ∼0.02 to 0.5 h−1, while profiles for Br were better fitted with a parabolic diffusion model and rate constants of 7.4–9.5 (μg L−1)−1h−1/2. Bioaccessibilities, based on maximum or equilibrium concentrations mobilised relative to total (XRF) concentrations, ranged from <1% for Cd and Se in polyethylene and polypropylene to over 10% for Br in a sample of expanded polystyrene and Pb in a sample of PVC. Calculations suggest that ingested plastic could contribute about 6% and 30% of a seabird's exposure to and accumulation of Pb and brominated compounds, respectively.
Показать больше [+] Меньше [-]The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid
2018
Zhang, Jia | Yin, Huilin | Chen, Linpeng | Liu, Fei | Chen, Honghan
Undissolved humic acid (HA) has a great retention effect on the migration of hexavalent chromium [Cr(VI)] in soil, and HA functional groups play a predominant role in this process. However, the coupled mode between Cr(VI) retention and HA functional groups reaction is still unclear. In this study, it was found that a fair amount of Cr on HA existed in the forms of ion exchangeable and binding Cr(VI) during the reaction resulting from the ion exchange adsorption and complexation of Cr(VI). According to the results of two-dimensional correlation spectroscopic analysis (2DCOS), HA functional groups participated in the reaction with Cr(VI) in the order of carboxyl ≈ chelated carboxyl > phenol > polysaccharide > methyl, and all the functional groups were more likely to be located at aromatic domains. Based on the results of XPS spectra, rather than to be oxidized by Cr(VI), carboxyl more tended to be complexed by chromium, which is regarded as the precondition for Cr(VI) reduction. Phenol, polysaccharide and methyl with distinct reaction activities successively acted as major electron donors for Cr(VI) reduction in different reaction stages. Consequently, it was determined that the retention of Cr(VI) by undissolved HA followed an adsorption-complexation-reduction mechanism, and based on this, a multi-step kinetic model with multiple types of complexation/reduction sites was developed to simulate the retention processes resulting in a much better fitting effect (R2 > 0.99) compared with traditional first-order and second-order kinetic models (R2 < 0.95). This demonstrated that the multi-step kinetic model is of great potential in accurately simulating the migration and transformation of Cr(VI) in soil environment.
Показать больше [+] Меньше [-]Arsenic speciation in environmental multimedia samples from the Youngsan River Estuary, Korea: A comparison between freshwater and saltwater
2018
Hong, Seongjin | Choi, Sung-Deuk | Khim, Jong Seong
Differences in the distribution, partitioning, and bioaccumulation characteristics of arsenicals between freshwater and saltwater systems remain poorly understood. To determine the characteristics of distribution and behavior of arsenicals, multimedia environmental samples including water, suspended particles, zooplankton, sediments, and porewater were collected from inner (five sites, freshwater) and outer (five sites, saltwater) regions of the estuary dike of the Youngsan River Estuary in South Korea (Nov., 2012). Six organic and inorganic forms of As were separated and measured using HPLC–ICP/MS equipped with an anion exchange column. Concentrations of arsenicals in water samples of the inner region (mean = 1.5 μg As L−1) were significantly lower than in those of the outer region (mean = 5.2 μg As L−1). Conversely, concentrations of As in suspended particles in the inner region (mean = 14 μg As g−1) were much greater than in the outer region (mean = 5.7 μg As g−1). The field-based distribution coefficient (Kd) for As depended strongly on salinity; relatively greater Kd values were found in freshwater compared with saltwater. The AsV was found to be the major form of As in all water and particle samples in both inner and outer regions. The zooplankton species were significantly distinguishable between the inner and outer regions; cladocerans were the most dominant species in freshwater and cyclopoida were predominantly found in saltwater. The As concentrations in zooplankton were shown to be particle-concentration dependent, suggesting that dietary exposure plays a substantial role in the bioaccumulation of As. Inorganic arsenicals, such as AsV and AsIII were the most dominant forms found in zooplankton. Partitioning behavior of As between porewater and sediments was similar to that in water–particle distributions. The results of the present study enhance the understanding of As biogeochemistry in river and estuarine environments.
Показать больше [+] Меньше [-]Endoplasmic reticulum stress mediates 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT)-induced toxicity and liver lipid metabolism changes in Nile tilapia (Oreochromis niloticus)
2018
Su, Yujie | Li, Huifeng | Xu, Chang | Wang, Xiaodan | Xie, Jia | Qin, Jian G. | Chen, Liqiao | Li, Erchao
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main active ingredient in an emerging water environment antifoulant, the toxicity and environmental impacts of which need to be further investigated. Thus, this study examined the toxicity of DCOIT on Nile tilapia (Oreochromis niloticus), including its effects on behavior, respiration and energy metabolism as well as the role of endoplasmic reticulum stress (ER stress) in mediating its toxicity and metabolic changes. The changes in fish behavior, respiration, neuronal signal transmission, energy metabolism, ER stress, and liver histology were examined via acute (4 days) and chronic (28 days) exposures to 0, 3, 15, 30 μg/L DCOIT in vivo. Additionally, ER stress levels were measured in 24-h periods of hepatocyte exposure to 0, 3, 15, 30 and 300 μg/L DCOIT in vitro. The hyper-locomotor activities decreased, but the respiration rate increased after a 4-day acute exposure period, indicating that DCOIT exposure altered fish energy metabolism. After acute exposure at a low DCOIT concentration, the activation of ER stress induced triglyceride accumulation in the liver. After chronic exposure for 28 days, the prolonged ER stress induced a series of pathological cellular changes. At the cellular level, exposure to a high DCOIT concentration induced ER stress in the hepatocytes. In addition, as a neurotoxin, DCOIT has the potential to disrupt the neurotransmission of the cholinergic system, resulting in motor behavior disruption. This study demonstrates that DCOIT plays a role in time- and concentration-dependent toxicity and that changes in lipid metabolism are directly related to endoplasmic reticulum function after exposure to an antifouling agent. This work advances the understanding of the toxic mechanism of DCOIT, which is necessary for its evaluation.
Показать больше [+] Меньше [-]Where to locate transit stops: Cross-intersection profiles of ultrafine particles and implications for pedestrian exposure
2018
Choi, Wonsik | Ranasinghe, Dilhara | DeShazo, J.R. | Kim, Jae Jin | Paulson, Suzanne E.
Epidemiological studies have shown that exposure to traffic-related pollutants increases incidence of adverse health outcomes. Transit users in cities across the globe commonly spend 15–45 min or more waiting at transit stops each day, often at locations with high levels of pollution from traffic. Here, we investigate the characteristics of concentration profiles of ultrafine particles (UFP) with 5 m spatial resolution across intersections, to determine the best place to site transit stops to minimize exposures. Cross-intersection UFP profiles were derived from 1744 profiles covering 90 m before and after each intersection center with a mobile monitoring platform. Measurements were made at 10 signalized intersections located at six urban sites, each with a distinct built environment, during both mornings and afternoons. Measurements were made within 1.5 m of the sidewalk and approximately at breathing height (1.5 m above ground level) to approximate sidewalk exposures. UFP profiles were strongly influenced by high emissions from vehicle stops and accelerations, and peaked within 30 m of intersection centers; from there concentrations decreased sharply with distance. Peak concentrations averaged about 90% higher than the minima along the block. They were accompanied by more frequent and larger transient concentration spikes, increasing the chance of people near the intersection being exposed to both short-term extremely high concentration spikes and higher average concentrations. The decays are somewhat larger before the intersection than after the intersection, however as siting transit stops after intersections is preferred for smooth traffic flow, we focus on after the intersection. Simple time-duration exposure calculations combined with breathing rates suggest moving a bus stop from 20 to 40–50 m after the intersection can reduce transit-users' exposure levels to total UFP substantially, in proportion to the reciprocal of the magnitude of elevation at the intersection.
Показать больше [+] Меньше [-]Integrated assessment of persistent toxic substances in sediments from Masan Bay, South Korea: Comparison between 1998 and 2014
2018
Lee, Junghyun | Hong, Seongjin | Kwon, Bong-Oh | Cha, Seung Ah | Jeong, Hee-Dong | Chang, Won Keun | Ryu, Jongseong | Giesy, John P. | Khim, Jong Seong
Complexity of anthropogenic influences on coastal ecosystems necessitates use of an integrated assessment strategy for effective interpretation and subsequent management. In this study a multiple lines of evidence (LOE) approach for sediment assessment, that combined use of chemistry, toxicity, and benthic community structure in the sediment quality triad was used to assess spatiotemporal changes and potential risks of persistent toxic substances (PTSs) in sediments of Masan Bay highlighting “long-term changes” between 1998 and 2014. Specific target objectives encompassed sedimentary PTSs (PAHs, alkylphenols (APs), and styrene oligomers), potential aryl hydrocarbon receptor (AhR; H4IIE-luc assay)- and estrogen receptor (ER; MVLN assay)-mediated activities, and finally several ecological quality (EcoQ) indices of benthic community structure. Concentrations of target PTSs in Masan Bay sediments were generally less by half in 2014 compared to those measured in 1998. Second, AhR-mediated potencies in sediments also decreased during this time interval, whereas ER-mediated potencies increased (+3790%), indicating that there has been substantial ongoing, input of ER agonists over the past 16 years. Potency balance analysis revealed that only 3% and 22% of the AhR- and ER-mediated potencies could be explained by identified known chemicals, such as PAHs and APs, respectively. This result indicated that non-targeted AhR and ER agonists had a considerable presence in the sediments over time. Third, EcoQ indices tended to reflect PTSs contamination in the region. Finally, ratio-to-mean values obtained from the aforementioned three LOEs indicated that quality of sediments from the outer region of the bay had recovery more during the period of 16-years than did the inner region. Overall, the results showed that even with the progress supported by recent efforts from the Korean governmental pollution control, PTSs remain a threat to local ecosystem, especially in the inner region of Masan Bay.
Показать больше [+] Меньше [-]Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem
2018
Hao, Yi | Ma, Chuanxin | Zhang, Zetian | Song, Youhong | Cao, Weidong | Guo, Jing | Zhou, Guopeng | Rui, Yukui | Liu, Liming | Xing, Baoshan
The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C60), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant–soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C60, activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety.
Показать больше [+] Меньше [-]Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(VI) adsorption performance
2018
Yinling, | Song, Shuang | Wang, Xiangxue | Niu, Fenglei | Ma, Ran | Yu, Shujun | Wen, Tao | Chen, Yuantao | Hayat, Tasawar | Alsaedi, Ahmed | Wang, Xiangke
The hierarchical core-shell and yolk-shell magnetic titanate nanosheets (Fe3O4@TNS) were successfully synthesized by employing magnetic nanoparticles (NPs) as interior core and intercrossed titanate nanostructures (NSs) as exterior shell. The as-prepared magnetic Fe3O4@TNS nanosheets had high specific areas (114.9 m2 g−1 for core-shell Fe3O4@TNS and 130.1 m2 g−1 for yolk-shell Fe3O4@TNS). Taking advantage of the unique multilayer structure, the nanosheets were suitable for eliminating U(VI) from polluted water environment. The sorption was strongly affected by pH values and weakly influenced by ionic strength, suggesting that the sorption of U(VI) on Fe3O4@TNS was mainly dominated by ion exchange and outer-sphere surface complexion. The maximum sorption capacities (Qmax) calculated from the Langmuir model were 68.59, 121.36 and 264.55 mg g−1 for core-shell Fe3O4@TNS and 82.85, 173.01 and 283.29 mg g−1 for yolk-shell Fe3O4@TNS, at 298 K, 313 K and 328 K, respectively. Thermodynamic parameters (ΔH0, ΔS0 and ΔG0) demonstrated that the sorption process was endothermic and spontaneous. Based on X-ray photoelectron spectroscopy (XPS) analyses, the sorption mechanism was confirmed to be cation-exchange between interlayered Na+ and UO22+. The yolk-shell Fe3O4@TNS had more extraordinary sorption efficiency than core-shell Fe3O4@TNS since the yolk-shell structure provided internal void space inside the titanate shell to accommodate more exchangeable active sites. The flexible recollection and high efficient sorption capacity made core-shell and yolk-shell Fe3O4@TNS nanosheets promising materials to eliminate U(VI) or other actinides in wastewater cleanup applications.
Показать больше [+] Меньше [-]