Уточнить поиск
Результаты 1041-1050 из 8,010
Early life exposure to greenness and executive function and behavior: An application of inverse probability weighting of marginal structural models Полный текст
2021
Jimenez, Marcia P. | Aris, Izzuddin M. | Rifas-Shiman, Sheryl | Young, Jessica | Tiemeier, Henning | Hivert, Marie-France | Oken, Emily | James, Peter
Increasingly, studies suggest benefits of natural environments or greenness on children's health. However, little is known about cumulative exposure or windows of susceptibility to greenness exposure. Using inverse probability weighting of marginal structural models (IPW/MSM), we estimated effects of greenness exposure from birth through adolescence on executive function and behavior. We analyzed data of 908 children from Project Viva enrolled at birth in 1999–2002 and followed up until early adolescence. In mid-childhood (median 7.7 years) and early adolescence (13.1 years), executive function and behavior were assessed using the Behavior Rating Inventory of Executive Function and the Strengths and Difficulties Questionnaire (SDQ). Greenness was measured at birth, early childhood, mid-childhood, and early adolescence, using the Normalized Difference Vegetation Index. We used inverse probability weighting of marginal structural models to estimate effects of interventions that ensure maximum greenness exposure versus minimum through all intervals; and that ensure maximum greenness only in early childhood (vs. minimum through all intervals). Results of the effects of “maximum (vs. minimum) greenness at all timepoints” did not suggest associations with mid-childhood outcomes. Estimates of “maximum greenness only in early childhood (vs. minimum)” suggested a beneficial association with mid-childhood SDQ (−3.21, 99 %CI: −6.71,0.29 mother-rated; −4.02, 99 %CI: −7.87,-0.17 teacher-rated). No associations were observed with early adolescent outcomes. Our results for “persistent” maximum greenness exposure on behavior, were not conclusive with confidence intervals containing the null. The results for maximum greenness “only in early childhood” may shed light on sensitive periods of greenness exposure for behavior regulation.
Показать больше [+] Меньше [-]Toxicity of binary mixtures of pesticides and pharmaceuticals toward Vibrio fischeri: Assessment by quantitative structure-activity relationships Полный текст
2021
Sigurnjak Bureš, M. | Ukić, Š | Cvetnić, M. | Prevarić, V. | Markić, M. | Rogošić, M. | Kušić, H. | Bolanča, T.
Pollutants in real aquatic systems commonly occur as chemical mixtures. Yet, the corresponding risk assessment is still mostly based on information on single-pollutant toxicity, accepting the assumption that pollutant mixtures exhibit additive toxicity effect which is often not the case. Therefore, it is still better to use the experimental approach. Unfortunately, experimental determination of toxicity for each mixture is practically unfeasible. In this study, quantitative structure-activity relationship (QSAR) models for the prediction of toxicity of binary mixtures towards bioluminescent bacteria Vibrio fischeri were developed at three toxicity levels (EC₁₀, EC₃₀ and EC₅₀). For model development, experimentally determined toxicity values of 14 pollutants (pharmaceuticals and pesticides) were correlated with their structural features, applying multiple linear regression together with genetic algorithm. Statistical analysis, internal validation and external validation of the models were carried out. The toxicity is accurately predicted by all three models. EC₃₀ and EC₅₀ values are mostly influenced by geometrical distances between nitrogen and sulfur atoms. Furthermore, the simultaneous presence of oxygen and chlorine atoms in mixture can induce the increase in toxicity. At lower effect levels (EC₁₀), nitrogen atom bonded to different groups has the highest impact on mixture toxicity. Thus, the analysis of the descriptors involved in the developed models can give insight into toxic mechanisms of the binary systems.
Показать больше [+] Меньше [-]Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions Полный текст
2021
Martínez-Ávila, Liliana | Peidro-Guzmán, Heidy | Pérez-Llano, Yordanis | Moreno Perlín, Tonatiuh | Sánchez-Reyes, Ayixon | Aranda, Elisabet | Ángeles de Paz, Gabriela | Fernández-Silva, Arline | Folch-Mallol, Jorge Luis | Cabana, Hubert | Gunde-Cimerman, Nina | Batista-García, Ramón Alberto
Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations. Initially, up to 40% of Phe and BaP were adsorbed, followed by biodegradation, resulting in 80% removal in 10 days. While extracellular laccase, peroxidase, and un-specific peroxygenase activities were not detected, NADPH-cytochrome c reductase activity peaked at 4 days. The successful removal of PAHs and the absence of toxic metabolites were confirmed by toxicological tests on moss Physcomitrium patens, bacterium Aliivibrio fischeri, human erythrocytes, and pulmonary epithelial cells (A549). Metabolic profiles were determined at the midpoint of the biodegradation exponential phase, with added Phe and BaP (100 ppm) and 1 M NaCl. Different hydroxylated products were found in the culture medium, while the conjugative metabolite 1-phenanthryl-β-D-glucopyranose was detected in the medium and in the cells. Transcriptome analysis resulted in 870 upregulated and 2,288 downregulated transcripts on PAHs, in comparison to glucose. Genomic mining of 61 available yeast genomes showed a widespread distribution of 31 xenobiotic degradation pathways in different yeast lineages. Two distributions with similar metabolic capacities included black yeasts and mainly members of the Sporidiobolaceae family (including EXF-1630), respectively. This is the first work describing a metabolic profile and transcriptomic analysis of PAH degradation by yeast.
Показать больше [+] Меньше [-]Biodegradation of PCB congeners by Paraburkholderia xenovorans LB400 in presence and absence of sediment during lab bioreactor experiments Полный текст
2021
Bako, Christian M. | Mattes, Timothy E. | Marek, Rachel F. | Hornbuckle, Keri C. | Schnoor, Jerald L.
Experiments were conducted to measure biodegradation of polychlorinated biphenyl (PCB) congeners contained in mixture Aroclor 1248 and congeners present in wastewater lagoon sediment contaminated decades earlier at Altavista, Virginia. A well-characterized strain of aerobic PCB-degrading bacteria, Paraburkholderia xenovorans LB400 was incubated in laboratory bioreactors with PCB-contaminated sediment collected at the site. The experiments evaluated strain LB400’s ability to degrade PCBs in absence of sediment and in PCB-contaminated sediment slurry. In absence of sediment, LB400 transformed 76% of Aroclor 1248 within seven days, spanning all homolog groups present in the mixture. In sediment slurry, only mono- and di-chlorinated PCB congeners were transformed. These results show that LB400 is capable of rapidly biodegrading most PCB congeners when they are freely dissolved in liquid but cannot degrade PCB congeners having three or more chlorine substituents in sediment slurry. Finally, using GC/MS-MS triple quadrupole spectrometry, this work distinguishes between physical (sorption to cells) and biological removal mechanisms, illuminates the process by which microorganisms with LB400-type congener specificity can selectively transform lower-chlorinated congeners over time, and makes direct comparisons to other studies where individual congener data is reported.
Показать больше [+] Меньше [-]The association of liver function biomarkers with internal exposure of short- and medium-chain chlorinated paraffins in residents from Jinan, China Полный текст
2021
Liu, Yi | Han, Xiumei | Zhao, Nan | Fang, Xinxin | Zhang, Shiwen | Li, Shixue | Jiang, Wei | Ding, Lei
Chlorinated paraffins (CPs) are pervasive environmental pollutants which have been reported to be hepatotoxic by laboratory cell and animal studies. However, the related epidemiological reports on their hepatotoxic effects to humans are sparse. In this study, we evaluated the associations between six liver enzymes and serum short-chain CP (SCCP) or medium-chain CP (MCCP) concentrations of 197 residents in Jinan, China. Serum S/MCCPs were detected by quadrupole time-of-flight high-resolution mass spectrometry coupled with atmospheric pressure chemical ionization source (APCI-QTOF-HRMS), and quantified by pattern deconvolution method. The associations between total serum S/MCCP concentrations (ΣS/MCCPs) and continuous liver enzyme levels were assessed by linear regression. Odds ratios (ORs) for the effects of serum ΣS/MCCPs concentrations on liver function biomarkers dichotomized by clinical reference intervals were predicted by logistic regression, either treating ΣS/MCCPs as continuous or categorical dependents. After multivariable adjustment, linear regression results illustrated that 1-ln unit increase in serum ΣSCCPs was negatively associated with male PA levels [-6.08, 95% confidence interval (CI): −11.90, −3.25, p < 0.05], positively associated with male TB levels (1.80, 95% CI: 0.28, 3.31, p < 0.05), and positively associated with female AST levels (1.39, 95% CI: 0.07, 2.70, p < 0.05). One-ln unit increase in serum ΣMCCPs was negatively associated male PA levels (−7.56, 95% CI: −17.15, −4.03, p < 0.05). Logistic regression results suggested that male serum ΣSCCPs were associated with increased prevalence of abnormal PA (OR = 1.47 per 1 ln-unit increase, CI = 1.18, 1.82) and TB (OR = 1.75, 95% CI = 1.12, 2.76) levels, and male serum ΣMCCPs were significantly associated with increased prevalence of abnormal PA (OR = 1.43, 95% CI = 1.03, 1.97) levels. In addition, male participants with concentrations above the median ΣS/MCCPs were associated with increased risk for abnormal PA levels [SCCPs, 2.11-fold (95% CI = 1.15, 3.87); MCCPs, 1.94-fold (95% CI = 1.24, 3.03)]. Male participants with concentrations above the median ΣSCCPs were also associated with increased risk for abnormal TB levels (OR = 1.75, 95% CI = 1.12, 2.76). Conclusively, our results revealed that CP internal exposure was associated with disturbed liver biomarker levels, suggesting the hepatotoxicity of both SCCPs and MCCPs to humans.
Показать больше [+] Меньше [-]Linking soil profile N2O concentration with surface flux in a cotton field under drip fertigation Полный текст
2021
Li, Yanyan | Gao, Xiaopeng | Tenuta, Mario | Gui, Dongwei | Li, Xiangyi | Zeng, Fanjiang
It remains unclear how the source and rate of nitrogen (N) fertilizers affect N₂O concentration and effluxes along the soil profile under the drip-fertigated agricultural system. A plot-based field study was performed in 2017 and 2018 in a cotton field in arid northwestern China, with an objective to elucidate the impact of the applications of conventional urea (Urea), polymer-coated urea (ESN) and stabilized urea (SuperU) at rates of 120 and 240 kg N ha⁻¹ on concentration and efflux of N₂O in the soil profile and its relationship with N₂O surface emissions. The in-situ N₂O concentrations at soil depths of 5, 15, 30 and 60 cm were measured and used to estimate soil profile N₂O effluxes. Estimates of surface N₂O flux using the concentration gradient-based (GM) were compared with those measured using the chamber-based (CM) method. In both years, soil N₂O concentrations at all depths increased in response to basal N application at planting or in-season fertigation events. However, N rate or source did not affect soil N₂O concentrations or effluxes at each depth. Surface emissions of N₂O were mostly associated with that presented in the top layer of 0–15 cm. Surface N₂O efflux determined by GM was poorly or not associated with those of chamber measurements, which was attributed to the low N₂O production restricted by soil moisture condition under the drip-fertigated condition. These results highlight the challenge of applying the enhanced efficiency N fertilizer products in the drip-fertigated agricultural system.
Показать больше [+] Меньше [-]Significant bioaccumulation and biotransformation of methyl mercury by organisms in rice paddy ecosystems: A potential health risk to humans Полный текст
2021
Du, Hongxia | Guo, Pan | Wang, Tao | Ma, Ming | Wang, Dingyong
Rice has been confirmed as one of the principal intake pathways for methylmercury (MeHg) in human, however, the impact of edible organisms, such as snails, loaches and eels, living in the rice-based ecosystem to the overall MeHg intake has been overlooked. Here, we conducted a cross-sectional ecological study, and the results showed that bioaccumulation of MeHg in these edible organisms was significantly higher than in paddy soils and rice roots (p < 0.001), even though rice roots and grains have significantly higher total Hg (THg) (p < 0.001). The MeHg/THg ratios were consistently and significantly higher in those edible organisms than in rice grains, suggesting a potential elevated MeHg exposure risk through consumption. Based on results of bioaccumulation factors (BAFs) for MeHg, it was clear that MeHg was bioaccumulated and biotransformed from paddy soils to earthworms and then to eels, as well as from paddy soils to snails and then to eels and loaches, potentially indicating that the consumption of eels and loaches was absolutely pernicious to people regularly feeding on them. Overall, MeHg was biomagnified along the food chain of the paddy ecosystem from soil to the organisms, and it was of potential higher risks for local residents to eat them, especially eels and loaches. Therefore, it is intensely indispensable for people fond of such diets to attenuate their consumption of rice, eels and loaches, thus mitigating their MeHg exposure risks.
Показать больше [+] Меньше [-]Effect of sterilization on cadmium immobilization and bacterial community in alkaline soil remediated by mercapto-palygorskite Полный текст
2021
Wang, Yale | Xu, Yingming | Huang, Qingqing | Liang, Xuefeng | Sun, Yuebing | Qin, Xu | Zhao, Lijie
Cadmium (Cd) pollution in alkaline soil in some areas of northern China has seriously threatened wheat production and human health. However, there are still few effective amendments for alkaline soil, and the mechanism of amendments with a good immobilization effect remains unclear. In this study, soil sterilization experiments were conducted to investigate the effects of soil microorganisms on the immobilization of a novel amendment—mercapto palygorskite (MPAL) in Cd-contaminated alkaline soils. The results showed that the mercapto on the MPAL surface was not affected by autoclaving. Compared with the control, the available Cd concentration in 0.025% MPAL treatments decreased by 18.80-29.23% after 1 d of aging and stabled after 10 d of aging. Importantly, the immobilization of MPAL on Cd in sterilized soil was significantly better than that in natural soil due to the changes in Cd fractions. Compared with MPAL-treated natural soil, exchangeable Cd fraction and carbonate-bound Cd fraction in MPAL-treated sterilized soil decreased by 20.79–27.09% and 20.05–26.45%, while Fe/Mn oxide-bound Cd fraction and organic matter-bound Cd fraction increased by 17.77–22.68% and 18.85–27.32%. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis found that the potential functions of the microbial community in normal and sterilized soil were different significantly. Soil sterilization increased the soil pH and decreased the arylsulfatase activity, but did not change the soil zeta potential and available sulfur. The changes in Cd fractions in MPAL-treated sterilized soil may be related to the reduction in the bacterial community and the changes in function microbial, but not to the soil properties. In addition, MPAL application had little effects on the bacterial community, soil pH value, zeta potential, available sulfur, and arylsulfatase. These results showed that the immobilization of MPAL on Cd in alkaline soil was stable and effective, and was not affected by soil sterilization and soil microorganism reduction.
Показать больше [+] Меньше [-]Amino, nitro, chloro, hydroxyl and methyl substitutions may inhibit the binding of PAHs with DNA Полный текст
2021
Qin, Chao | Hu, Xiaojie | Yang, Bing | Liu, Juan | Gao, Yanzheng
The binding of PAHs with DNA to form PAH-DNA adducts is a crucial step in PAH-induced carcinogenesis. How functional groups affect this binding is largely unknown. Here, we observed that functional group substitutions strongly inhibited PAH-DNA binding. Additionally, –OH substitution has the most potent inhibitory effect as it causes the smallest change in the electrostatic surface potential. Fourier transform infrared spectroscopy and molecular docking analyses demonstrated that PAH derivatives bind with guanine via intercalation and groove binding and then non-specifically insert into the major/minor grooves of DNA. Quantum chemical calculations suggested that hydrogen/halogen bonding may be essential in affecting the binding of functional group-substituted PAHs with DNA. It was further revealed that Log KOA and the PAH derivatives’ melting points correlated significantly with binding affinity, implying that changes in the physicochemical characteristics are important factors. This study opens a new window for understanding the relationship between highly toxic PAH derivatives and genetic materials.
Показать больше [+] Меньше [-]Purification, characterization, and catalytic mechanism of N-Isopropylammelide isopropylaminohydrolase (AtzC) involved in the degradation of s-triazine herbicides Полный текст
2021
Zhou, Nan | Wang, Jie | Wang, Wenbo | Wu, Xiangwei
Deamination is ubiquitous in nature and has important biological significance. Leucobacter triazinivorans JW-1, recently isolated from sludge, can rapidly degrade s-triazine herbicides. The responsible enzymes, however, have not been purified and characterized.Herein, we purified an amidohydrolase, i.e., N-isopropylammelide isopropylaminohydrolase (AtzC) from JW-1 cells by ammonium sulfate precipitation and three chromatography steps. The purified AtzC catalyzed amidohydrolysis of N-isopropylammelide to cyanuric acid. The optimal catalytic conditions of the purified AtzC were 42 °C and pH 7.0, and the Kₘ and Vₘₐₓ of AtzC was 0.811 mM and 28.19 mmol/min·mg. AtzC could catalyze amidohydrolysis of an N-alkyl substituent from dihydroxy s-triazines to cyanuric acid. Molecular docking and structural alignments were used to infer AtzC catalytic mechanism. The structural architecture of AtzC resembled that of cytosine deaminase in class III amidohydrolase, with a single Zn²⁺ coordinated by His and Asp. Interestingly, the AtzC lacks an acidic residue putatively to activate water for hydrolysis as compared to the other amidohydrolases. His253 in AtzC probably functions as a single general acid-base catalyst. These findings further enhance our understanding how aminohydrolases catalyze the metabolism of s-triazine herbicides.
Показать больше [+] Меньше [-]