Уточнить поиск
Результаты 1061-1070 из 7,290
Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology Полный текст
2022
Ismanto, Aris | Hadibarata, Tony | Kristanti, Risky Ayu | Maslukah, Lilik | Safinatunnajah, Novia | Kusumastuti, Wulan
Endocrine disrupting chemicals (EDCs) are an emerging category of toxicity that adversely impacts humans and the environment's well-being. Diseases like cancer, cardiovascular risk, behavioral disorders, autoimmune defects, and reproductive diseases are related to these endocrine disruptors. Because these chemicals exist in known sources such as pharmaceuticals and plasticizers, as well as non-point sources such as agricultural runoff and storm water infiltration, the interactive effects of EDCs are gaining attention. However, the efficiency of conventional treatment methods is not sufficient to fully remediate EDCs from aqueous environments as the occurrence of EDC bioremediation and biodegradation is detected in remediated drinking water. Incorporating modification into current remediation techniques has to overcome challenges such as high energy consumption and health risks resulting from conventional treatment. Hence, the use of advanced psychochemical and biological treatments such as carbon-based adsorption, membrane technology, nanostructured photocatalysts, microbial and enzyme technologies is crucial. Intensifying environmental and health concerns about these mixed contaminants are primarily due to the lack of laws about acute concentration limits of these EDCs in municipal wastewater, groundwater, surface water, and drinking water. This review article offers evidence of fragmentary available data for the source, fate, toxicity, ecological and human health impact, remediation techniques, and mechanisms during EDC removal, and supports the need for further data to address the risks associated with the presence of EDCs in the environment. The reviews also provide comprehensive data for biodegradation of EDCs by using microbes such as fungi, bacteria, yeast, filamentous fungi, and their extracellular enzymes.
Показать больше [+] Меньше [-]Potentials of orally supplemented selenium-enriched Lacticaseibacillus rhamnosus to mitigate the lead induced liver and intestinal tract injury Полный текст
2022
Jin, Han | Riaz Rajoka, Muhammad Shahid | Xu, Xiaoguang | Liao, Ning | Pang, Bing | Yan, Lu | Liu, Guanwen | Sun, Hui | Jiang, Chunmei | Shao, Dongyan | Barba, Francisco J. | Shi, Junling
Lead is a metal that exists naturally in the Earth's crust and is a ubiquitous environmental contaminant. The alleviation of lead toxicity is important to keep human health under lead exposure. Biosynthesized selenium nanoparticle (SeNPs) and selenium-enriched Lactobacillus rhamnosus SHA113 (Se-LRS) were developed in this study, and their potentials in alleviating lead-induced injury to the liver and intestinal tract were evaluated in mice by oral administration for 4 weeks. As results, oral intake of lead acetate (150 mg/kg body weight per day) caused more than 50 times and 100 times lead accumulation in blood and the liver, respectively. Liver function was seriously damaged by the lead exposure, which is indicated as the significantly increased lipid accumulation in the liver, enhanced markers of liver function injury in serum, and occurrence of oxidative stress in liver tissues. Serious injury in intestinal tract was also found under lead exposure, as shown by the decrease of intestinal microbiota diversity and occurrence of oxidative stress. Except the lead content in blood and the liver were lowered by 52% and 58%, respectively, oral administration of Se-LRS protected all the other lead-induced injury markers to the normal level. By the comparison with the effects of normal L. rhamnosus SHA113 and the SeNPs isolated from Se-LRS, high protective effects of Se-LRS can be explained as the extremely high efficiency to promote lead excretion via feces by forming insoluble mixture. These findings illustrate the developed selenium-enriched L. rhamnosus can efficiently protect the liver and intestinal tract from injury by lead.
Показать больше [+] Меньше [-]Short-term effects of cold spells on plasma viscosity: Results from the KORA cohort study in Augsburg, Germany Полный текст
2022
Ni, Wenli | Schneider, Alexandra | Wolf, Kathrin | Zhang, Siqi | Chen, Kai | Koenig, Wolfgang | Peters, Annette | Breitner, Susanne
As the underlying mechanisms of the adverse effects of cold spells on cardiac events are not well understood, we explored the effects of cold spells on plasma viscosity, a blood parameter linked to cardiovascular disease. This cross-sectional study involved 3622 participants from the KORA S1 Study (1984–1985), performed in Augsburg, Germany. Exposure data was obtained from the Bavarian State Office for the Environment. Cold spells were defined as two or more consecutive days with daily mean temperatures below the 3ʳᵈ, 5ᵗʰ, or 10ᵗʰ percentile of the distribution. The effects of cold spells on plasma viscosity were explored by generalized additive models with distributed lag nonlinear models (DLNM). We estimated cumulative effects at lags 0–1, 0–6, 0–13, 0–20, and 0–27 days separately. Cold spells (mean temperature <3ʳᵈ, <5ᵗʰ or <10ᵗʰ percentile) were significantly associated with an increase in plasma viscosity with a lag of 0–1 days [%change of geometric mean (95% confidence interval): 1.35 (0.06–2.68), 1.35 (0.06–2.68), and 2.49 (0.34–4.69), respectively], and a lag of 0–27 days [18.81 (8.97–29.54), 17.85 (8.29–28.25), and 7.41 (3.35–11.0), respectively]. For the analysis with mean temperature <3ʳᵈ or 10ᵗʰ percentile, we also observed significant associations at lag 0–20 days [8.34 (0.43–16.88), and 4.96 (1.68, 8.35), respectively]. We found that cold spells had significant immediate and longer lagged effects on plasma viscosity. This finding supports the complex interplay of multiple mechanisms of cold on adverse cardiac events and enriches the knowledge about how cold exposure acts on the human body.
Показать больше [+] Меньше [-]Impact of microorganisms and entomopathogenic nematodes used for plant protection on solitary and social bee pollinators: Host range, specificity, pathogenicity, toxicity, and effects of experimental parameters Полный текст
2022
Erler, Silvio | Eckert, Jakob H. | Steinert, Michael | Alkassab, Abdulrahim T.
Impact of microorganisms and entomopathogenic nematodes used for plant protection on solitary and social bee pollinators: Host range, specificity, pathogenicity, toxicity, and effects of experimental parameters Полный текст
2022
Erler, Silvio | Eckert, Jakob H. | Steinert, Michael | Alkassab, Abdulrahim T.
Pollinating bees are stressed by highly variable environmental conditions, malnutrition, parasites and pathogens, but may also by getting in contact with microorganisms or entomopathogenic nematodes that are used to control plant pests and diseases. While foraging for water, food, or nest material social as well as solitary bees have direct contact or even consume the plant protection product with its active substance (e.g., viruses, bacteria, fungi, etc.). Here, we summarize the results of cage, microcolony, observation hive assays, semi-field and field studies using full-size queen-right colonies. By now, some species and subspecies of the Western and Eastern honey bee (Apis mellifera, A. cerana), few species of bumble bees, very few stingless bee species and only a single species of leafcutter bees have been studied as non-target host organisms. Survival and reproduction are the major criteria that have been evaluated. Especially sublethal effects on the bees' physiology, immune response and metabolisms will be targets of future investigations. By studying infectivity and pathogenic mechanisms, individual strains of the microorganism and impact on different bee species are future challenges, especially under field conditions. Overall, it became evident that honey bees, bumble bees and few stingless bee species may not be suitable surrogate species to make general conclusions for biological mechanisms of bee-microorganism interactions of other social bee species. Solitary bees have been studied on leafcutter bees (Megachile rotundata) only, which shows that this huge group of bees (∼20,000 species worldwide) is right at the beginning to get an insight into the interaction of wild pollinators and microbial plant protection organisms.
Показать больше [+] Меньше [-]Impact of microorganisms and entomopathogenic nematodes used for plant protection on solitary and social bee pollinators: Host range, specificity, pathogenicity, toxicity, and effects of experimental parameters Полный текст
2022
Erler, Silvio | Eckert, Jakob H. | Steinert, Michael | Alkassab, Abdulrahim T.
Pollinating bees are stressed by highly variable environmental conditions, malnutrition, parasites and pathogens, but may also by getting in contact with microorganisms or entomopathogenic nematodes that are used to control plant pests and diseases. While foraging for water, food, or nest material social as well as solitary bees have direct contact or even consume the plant protection product with its active substance (e.g., viruses, bacteria, fungi, etc.). Here, we summarize the results of cage, microcolony, observation hive assays, semi-field and field studies using full-size queen-right colonies. By now, some species and subspecies of the Western and Eastern honey bee (Apis mellifera, A. cerana), few species of bumble bees, very few stingless bee species and only a single species of leafcutter bees have been studied as non-target host organisms. Survival and reproduction are the major criteria that have been evaluated. Especially sublethal effects on the bees' physiology, immune response and metabolisms will be targets of future investigations. By studying infectivity and pathogenic mechanisms, individual strains of the microorganism and impact on different bee species are future challenges, especially under field conditions. Overall, it became evident that honey bees, bumble bees and few stingless bee species may not be suitable surrogate species to make general conclusions for biological mechanisms of bee-microorganism interactions of other social bee species. Solitary bees have been studied on leafcutter bees (Megachile rotundata) only, which shows that this huge group of bees (∼20,000 species worldwide) is right at the beginning to get an insight into the interaction of wild pollinators and microbial plant protection organisms.
Показать больше [+] Меньше [-]The impacts of urban structure on PM2.5 pollution depend on city size and location Полный текст
2022
Zhao, Xiuling | Zhou, Weiqi | Wu, Tong | Han, Lijian
Many cities across the world face the challenge of severe fine particulate matter (PM₂.₅) pollution. Among the many factors that affect PM₂.₅ pollution, there is an increasing interest in the impacts of urban structure. However, quantifying these impacts in China has been difficult due to differences of study area and scale in existing research, as well as limited sample sizes. Here, we conducted a continental study focusing on 301 prefectural cities in mainland China to investigate the effects of urban structure, including urban size and urban compactness, on PM₂.₅ concentrations. Based on PM₂.₅ raster and land cover data, we used quantile regression and a general multilinear model to estimate the effects and relative contributions of urban size and urban compactness on urban PM₂.₅ pollution, with explicit consideration for pollution level, urban size and geographical location. We found: (1) nationwide, the larger and more compact that cities were, the heavier the PM₂.₅ pollution tended to be. Additionally, this relationship became stronger with increasing levels of pollution. (2) In general, urban size played a more important role than urban form, and there were no significant interactive effects between the two metrics on urban PM₂.₅ concentrations at the national scale. (3) The impacts of urban size and form varied by city size and geographical location. The impacts of urban size were only significant for small or medium-large cities but not for large cities. Among large cities, only urban form had a significantly positive effect on urban PM₂.₅ concentrations. The further north and west that cities were, the more dependent PM₂.₅ pollution was on urban form, whereas the further south and east that cities were, the greater the impact of urban size. These results provide insights into how urban design and planning can be used to alleviate air pollution.
Показать больше [+] Меньше [-]Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuron-methyl residues to maize Полный текст
2022
Zhang, Hao | Qian, Yingying | Fan, Dandan | Tian, Yanning | Huang, Xing
Bensulfuron-methyl (BSM) residues in soil threaten the rotation of BSM-sensitive crops. Microbial biofilms formed on crop roots could improve the ability of microbes to survive and protect crop roots. However, the research on biofilms with the purpose of mitigating or even eliminating BSM damage to sensitive crops is very limited. In this study, one BSM-degrading bacterium, Hansschlegelia zhihuaiae S113, colonized maize roots by forming a biofilm. Root exudates were associated with increased BSM degradation efficiency with strain S113 in rhizosphere soil relative to bulk soil, so the interactions among BSM degradation, root exudates, and biofilms may provide a new approach for the BSM-contaminated soil bioremediation. Root exudates and their constituent organic acids, including fumaric acid, tartaric acid, and l-malic acid, enhanced biofilm formation with 13.0–22.2% increases, owing to the regulation of genes encoding proteins responsible for cell motility/chemotaxis (fla/che cluster) and materials metabolism, thus promoting S113 population increases. Additionally, root exudates were also able to induce exopolysaccharide production to promote mature biofilm formation. Complete BSM degradation and healthy maize growth were found in BSM-contaminated rhizosphere soil treated with wild strain S113, compared to that treated with loss-of-function mutants ΔcheA-S113 (89.3%, without biofilm formation ability) and ΔsulE-S113 (22.1%, without degradation ability) or sterile water (10.7%, control). Furthermore, the biofilm mediated by organic acids, such as l-malic acid, exhibited a more favorable effect on BSM degradation and maize growth. These results showed that root exudates and their components (such as organic acids) can induce the biosynthesis of the biofilm to promote BSM degradation, emphasizing the contribution of root biofilm in reducing BSM damage to maize.
Показать больше [+] Меньше [-]Association of air pollution exposure with low arousal threshold obstructive sleep apnea: A cross-sectional study in Taipei, Taiwan Полный текст
2022
Qiu, Hong | Liu, Wen-Te | Lin, Shang-Yang | Li, Zhi-Yuan | He, Yan-Su | Yim, Steve Hung Lam | Wong, Eliza Lai-Yi | Chuang, Hsiao-Chi | Ho, Kin-Fai
Emerging evidence witnesses the association of air pollution exposure with sleep disorders or the risk of obstructive sleep apnea (OSA); however, the results are not consistent. OSA patients with or without a low arousal threshold (LAT) have different pathology and therapeutic schemes. No study has evaluated the potential diverse effects of air pollution on the phenotypes of OSA. The current study aimed to evaluate the associations of short-term and long-term exposure to air pollution with sleep-disordered measures and OSA phenotypes. This cross-sectional study consisted of 4634 participants from a sleep center in Taipei from January 2015 to April 2019. The personal exposure to ambient PM₂.₅ and NO₂ was assessed by a spatial-temporal model. Overnight polysomnography was used to measure the sleep parameters. According to a developed clinical tool, we defined the low arousal threshold (LAT) and identified the OSA patients with or without LAT. We applied a generalized linear model and multinomial logistic regression model to estimate the change of sleep measures and risk of the OSA phenotypes, respectively, associated with an interquartile range (IQR) increment of personal pollution exposure after adjusting for the essential confounders. In the single-pollutant model, we observed the associations of NO₂ with sleep-disordered measures by decreasing the total sleep time, sleep efficiency, extending the time of wake after sleep onset, and the association of NO₂ with the increased risk of LAT OSA by around 15%. The two-pollutant model with both long-term and short-term exposures confirmed the most robust associations of long-term NO₂ exposure with sleep measures. An IQR increment of NO₂ averaged over the past year (6.0 ppb) decreased 3.32 min of total sleep time and 0.85% of sleep efficiency. Mitigating exposure to air pollution may improve sleep quality and reduce the risk of LAT OSA.
Показать больше [+] Меньше [-]The adsorption mechanisms of oriental plane tree biochar toward bisphenol S: A combined thermodynamic evidence, spectroscopic analysis and theoretical calculations Полный текст
2022
Fang, Zheng | Gao, Yurong | Zhang, Fangbin | Zhu, Kaipeng | Shen, Zihan | Liang, Haixia | Xie, Yue | Yu, Chenglong | Bao, Yanping | Feng, Bo | Bolan, Nanthi | Wang, Hailong
Garden pruning waste is becoming a problem that intensifies the garbage siege. It is of great significance to purify polluted water using biochar prepared from garden pruning waste. Herein, the interaction mechanism between BPS and oriental plane tree biochar (TBC) with different surface functional groups was investigated by adsorption experiments, spectroscopic analysis and theoretical calculations. Adsorption kinetics and isotherm of BPS on TBC can be satisfactorily fitted into pseudo-second-order kinetic and Langmuir models, respectively. A rapid adsorption kinetic toward BPS was achieved by TBC in 15 min. As compared with TBC prepared at low temperature (300 °C) (LTBC), the maximum adsorption capacity of TBC prepared at high temperature (600 °C) (HTBC) can be significantly improved from 46.7 mg g⁻¹ to 72.9 mg g⁻¹. Besides, the microstructure and surface functional groups of HTBC were characterized using SEM, BET-N₂, and XPS analysis. According to density functional theory (DFT) theoretical calculations, the higher adsorption energy of HTBC for BPS was mainly attributed to π-π interaction rather than hydrogen bonding, which was further supported by the analysis of FTIR and Raman spectra as well as the adsorption thermodynamic parameters. These findings suggested that by improving π-π interaction through high pyrolysis temperature, BPS could be removed and adsorbed by biochar with high efficacy, cost-efficiency, easy availability, and carbon-negative in nature, contributing to global carbon neutrality.
Показать больше [+] Меньше [-]Nexus between potentially toxic elements’ accumulation and seasonal/anthropogenic influences on mangrove sediments and ecological risk in Sundarbans, Bangladesh: An approach from GIS, self-organizing map, conditional inference tree and random forest models Полный текст
2022
Hossain Bhuiyan, Mohammad Amir | Chandra Karmaker, Shamal | Saha, Bidyut Baran
Mangroves play a vital role in protecting the coastal community from the climate change effect and in the restoration of the coastal ecosystem. This research has been designed to determine the spatial and seasonal changes of potentially toxic elements’ (PTEs) concentration in sediments and their potential source contribution among the different human-driven processes in Sundarbans, Bangladesh. Different pollution evaluation indices, random forest (RF) model, conditional inference tree (CIT), self-organizing map (SOM), geographical information system (GIS), and principal component analysis (PCA) were used for the interpretation of sources and risk assessment of PTEs. The mean concentration of PTEs both in winter and monsoon seasons has fallen below the threshold effect level but exceeded the rare effect level of marine sediments quality standards. Results showed that the PTEs were significantly enriched (EF > 1.00 < 70.00) in sediments, whereas the Cd enrichment (7.00% samples) was very alarming (EF = 60–70). Except for Zn and Cd, other PTEs were enriched in 30–60% samples. The highest geoaccumulation and contamination factors for Cd were observed in 46–72% of samples. The ecological risk (ER) factors showed similar results where Cd showed strong to very strong factors (ER = 110–2218) in 80% of samples. The CIT explained the natural/geogenic and anthropogenic sources of pollution, where the higher CIT values for Cd indicated industrial, aquaculture, and coal-based thermal powerplant. The RF model provided that shrimp firms, power plants, industry, and seaport were recognized as the influential sources for Zn, Pb, Cr, Cd, and As in sediments. Though Pb and As were found as the most significant pollutants, Cd was identified as a severe threat to ecology and public health. Based on CIT, RF, SOM and PCA the order of PTEs in mangroves sediment were:industrial/urban > aquaculture/shrimpfirm > powerplant > seaportoperation > tourism > geogenic/natural. The present study will help the policymakers for effective and sustainable management of the mangrove ecosystem.
Показать больше [+] Меньше [-]Disturbance of glutamate metabolism and inhibition of CaM-CaMKII-CREB signaling pathway in the hippocampus of mice induced by 1,2-dichloroethane exposure Полный текст
2022
Huang, Weiyu | Wang, Zijiang | Wang, Gaoyang | Li, Kunyang | Jin, Yaping | Zhao, Fenghong
1,2-Dichloroethane (1,2-DCE) is a highly toxic neurotoxicity, and the brain tissue is the main target organ. At present, long-term exposure to 1,2-DCE has been shown to cause cognitive dysfunction in some studies, but the mechanism is not clear. The results of this study showed that long-term 1,2-DCE exposure decreased learning and memory abilities in mice and impaired the structure and morphology of neurons in the hippocampal region. Moreover, except for the mRNA level of PAG, the enzymatic activities and protein levels of GS and PAG, as well as the mRNA level of GS were inhibited. With increasing dose of exposure, the protein and mRNA expression of GLAST and GLT-1 also decreased. Contrarily, there were protein and mRNA expression upregulation of GluN1, GluN2A and GluN2B in the hippocampus, as well as increased levels of extracellular Glu and intracellular Ca²⁺. In addition, 1,2-DCE exposure also downregulated the protein expression levels of CaM, CaMKII and CREB. Taken together, our results suggest that long-term 1,2-DCE exposure impairs the learning and memory capacity in mice, which may be attributed to the disruption of Glu metabolism and the inhibition of CaM- CaMKII-CREB signaling pathway in the hippocampus.
Показать больше [+] Меньше [-]