Уточнить поиск
Результаты 1081-1090 из 7,280
Soil N2O emission in Cinnamomum camphora plantations along an urbanization gradient altered by changes in litter input and microbial community composition
2022
Xu, Xintong | He, Chang | Zhong, Chuan | Zhang, Qiang | Yuan, Xi | Hu, Xiaofei | Deng, Wenping | Wang, Jiawei | Du, Qu | Zhang, Ling
Urbanization alters land use, increasing the rate of greenhouse gas (GHG) emissions and hence atmospheric compositions. Nitrous oxide (N₂O) is a major GHG that contributes substantially to global warming. N₂O emissions are sensitive to changes in substrate availabilities, such as litter and N input, as well as micro-environmental factors caused by land-use change upon urbanization. However, the potential impacts of changing litter and N on soil N₂O emissions along urban-rural gradients is not well understood. Here, we conducted an in situ study over 19 months in Cinnamomum camphora plantations along an urban-rural gradient, to examine the effects of the urban-rural gradient, N and litter input on N₂O emissions from C. camphora plantation soils and the underlying mechanisms via N, litter and microbial communities. The results showed that urban soil N₂O emissions were 105% and 196% higher than those from suburban and rural soil, respectively, and co-occurred with a higher abundance of AOA, nirS and nirK genes. Litter removal increased cumulative N₂O emissions by 59.7%, 50.9% and 43.3% from urban, suburban and rural soils, respectively. Compared with litter kept treatment, increases in AOA and nirK abundance were observed in urban soil, and higher rural nirS abundance occurred following litter removal. Additionally, the relatively higher soil temperature and available N content in the urban soil increased N₂O emissions compared with the suburban and rural soil. Therefore, in addition to changes in microbial communities and abiotic environmental factors, litter kept in C. camphora plantations along an urban-rural gradient is also important in mitigating N₂O emissions, providing a potential strategy for the mitigation of N₂O emissions.
Показать больше [+] Меньше [-]Metabolomics as a tool for in situ study of chronic metal exposure in estuarine invertebrates
2022
Hillyer, Katie E. | Raes, Eric | Karsh, Kristen | Holmes, Bronwyn | Bissett, Andrew | Beale, David J.
Estuaries are subject to intense human use globally, with impacts from multiple stressors, such as metal contaminants. A key challenge is extending beyond traditional monitoring approaches to understand effects to biota and system function. To explore the metabolic effects of complex metal contaminants to sediment dwelling (benthic) fauna, we apply a multiple-lines-of-evidence approach, coupling environmental monitoring, benthic sampling, total metals analysis and targeted metabolomics.We characterise metabolic signatures of metal exposure in three benthic invertebrate taxa, which differed in distribution across sites and severity of metal exposure: sipunculid (very high), amphipod (high), maldanid polychaete (moderate). We observed sediment and tissue metal loads far exceeding sediment guidelines where toxicity-related adverse effects may be expected, for metals including, As, Cd, Pb, Zn and Hg.Change in site- and taxa-specific metabolite profiles was highly correlated with natural environmental drivers (sediment total organic carbon and water temperature). At the most metal influenced sites, metabolite variation was also correlated with sediment metal loads. Using supervised multivariate regression, taxa-specific metabolic signatures of increased exposure and possibility of toxic effects were characterised against multiple reference sites. Metabolic signatures varied according to each taxon and degree of metal exposure, but primarily indicated altered cysteine and methionine metabolism, metal-binding and elimination (lysosomal) activity, coupled to change in complex biosynthesis pathways, responses to oxidative stress, and cellular damage.This novel multiple-lines-of-evidence approach combining metabolomics with traditional environmental monitoring, enabled detection and characterisation of chronic metal exposure effects in situ in multiple invertebrate taxa. With capacity for application to rapid and effective monitoring of non-model species in complex environments, these approaches are critical for improved assessment and management of systems that are increasingly subject to anthropogenic drivers of change.
Показать больше [+] Меньше [-]Characterization of the vertical variation in indoor PM2.5 in an urban apartment in China
2022
Ainiwaer, Subinuer | Chen, Yilin | Shen, Guofeng | Shen, Huizhong | Ma, Jianmin | Cheng, Hefa | Tao, Shu
Indoor air pollution has aroused increasing concerns due to its significant adverse health impacts. Indoor PM₂.₅ exposure assessments often rely on PM₂.₅ concentration measured at a single height, which overlooks the vertical variation of PM₂.₅ concentrations accompanied by various indoor activities. In this study, we characterize the vertical profile of PM₂.₅ concentration by monitoring PM₂.₅ concentration at eight different heights in the kitchen and the bedroom, respectively, using low-cost sensors with high temporal resolution. The localized enhancement of PM₂.₅ concentration in elevated heights in the kitchen during cooking was observed on clean and polluted days, showing dominating contribution from cooking activities. The source contribution from cooking and outdoor penetration was semi-quantified using regression models. Stratified source contribution from cooking activities was evident in the kitchen during the cooking period. The contribution in elevated heights (above 170 cm) almost tripled the contrition in bottom layers (below 140 cm). In contrast, little vertical variation was observed during other times of the day in the kitchen or the bedroom. The exposure level calculated using the multi-height measurement in this study is consistently higher than the exposure level estimated from the single-height (at 110 cm) measurement. A more significant discrepancy existed for the cookers (17.8%) than the non-cookers (13.5%). By profiling the vertical gradient of PM₂.₅ concentration, we show the necessity to conduct multi-height measurements or proper breathing-height measurements to obtain unbiased concentration information for source apportionment and exposure assessment. In particular, the multi-height measuring scheme will be crucial to inform household cooking emission regulations.
Показать больше [+] Меньше [-]Hemocytes of bivalve mollusks as cellular models in toxicological studies of metals and metal-based nanomaterials
2022
Weng, Nanyan | Meng, Jie | Huo, Shouliang | Wu, Fengchang | Wang, Wen-Xiong
Understanding the impacts of environmental pollutants on immune systems is indispensable in ecological and health risk assessments due to the significance of normal immunological functions in all living organisms. Bivalves as sentinel organisms with vital ecological importance are widely distributed in aquatic environments and their innate immune systems are the sensitive targets of environmental pollutants. As the central component of innate immunity, bivalve hemocytes are endowed with specialized endolysosomal systems for particle internalization and metal detoxification. These intrinsic biological features make them a unique cellular model for metal- and nano-immunotoxicology research. In this review, we firstly provided a general overview of bivalve's innate immunity and the classification and immune functions of hemocytes. We then summarized the recent progress on the interactions of metals and nanoparticles with bivalve hemocytes, with emphasis on the involvement of hemocytes in metal regulation and detoxification, the interactions of hemocytes and nanoparticles at eco/bio-nano interface and hemocyte-mediated immune responses to the exposure of metals and nanoparticles. Finally, we proposed the key knowledge gaps and future research priorities in deciphering the fundamental biological processes of the interactions of environmental pollutants with the innate immune system of bivalves as well as in developing bivalve hemocytes into a promising cellular model for nano-immuno-safety assessment.
Показать больше [+] Меньше [-]Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster
2022
Dwivedi, Shiwangi | D'Souza, Leonard Clinton | Shetty, Nidhi Ganesh | Raghu, Shamprasad Varija | Sharma, Anurag
Deciphering the potential mechanism of chemical-induced toxicity enables us to alleviate the cellular and organismal dysfunction. The environmental presence of nonylphenol (endocrine disruptor) has a major health concern due to its widespread usage in our day-to-day life. The current study establishes a novel functional link among nonylphenol-induced oxidative stress, Heat shock protein 27 (Hsp27, member of stress protein family), and Ecdysone receptor (EcR, a nuclear receptor), which eventually coordinates the nonylphenol-induced sub-cellular and organismal level toxicity in a genetically tractable model Drosophila melanogaster. Drosophila larvae exposed to nonylphenol (0.05, 0.5 and 5.0 μg/mL) showed a significant decrease in Hsp27 and EcR mRNA levels in the midgut. In concurrence, reactive oxygen species (ROS) levels were increased with a corresponding decline in glutathione (GSH) level and Thioredoxin reductase (TrxR) activity. Increased lipid peroxidation (LPO), protein carbonyl (PC) contents, and cell death were also observed in a correlation with the nonylphenol concentrations. Sub-cellular toxicity poses a negative organismal response, which was evident by delayed larval development and reduced Drosophila emergence. Subsequently, a positive genetic correlation (p < 0.001) between EcR and Hsp27 revealed that nonylphenol-dependent EcR reduction is a possible link for the downregulation of Hsp27. Further, Hsp27 overexpression in midgut cells showed a reduction in nonylphenol-induced intracellular ROS, LPO, PC content, and cell death through the TrxR mediated regenerative pathway and reduced GSH level improving the organismal response to the nonylphenol exposure. Altogether, the study elucidates the potential EcR-Hsp27 molecular interactions in mitigating the nonylphenol-induced cellular and organismal toxicity.
Показать больше [+] Меньше [-]Effects of soil protists on the antibiotic resistome under long term fertilization
2022
Li, Hong-Zhe | Zhu, Dong | Sun, An-Qi | Qin, Yi-Fei | Lindhardt, Jonathan Hessner | Cui, Li
Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers.
Показать больше [+] Меньше [-]Point or non-point source: Toxicity evaluation using m-POCIS and zebrafish embryos in municipal sewage treatment plants and urban waterways
2022
Xie, Peihong | Yan, Qiankun | Xiong, Jingjing | Li, Huizhen | Ma, Xue | Yau, Ching
Municipal sewage treatment plants (STPs) have been regarded as an important source of organic contaminants in aquatic environment. To assess the impact of STPs on occurrence and toxicity of STP-associated contaminants in receiving waterways, a novel passive sampler modified from polar organic chemical integrative sampler (m-POCIS) was deployed at the inlet and outlet of a STP and several upstream and downstream sites along a river receiving STP effluent in Guangzhou, China. Eighty-seven contaminants were analyzed in m-POCIS extracts, along with toxicity evaluation using zebrafish embryos. Polycyclic musks were the predominant contaminants in both STP and urban waterways, and antibiotics and current-use pesticides (e.g., neonicotinoids, fiproles) were also ubiquitous. The m-POCIS extracts from downstream sites caused significant deformity in embryos, yet the toxicity could not be explained by the measured contaminants, implying the presence of nontarget stressors. Sewage treatment process substantially reduced embryo deformity, chemical oxygen demand, and contamination levels of some contaminants; however, concentrations of neonicotinoids and fiproles increased after STP treatment, possibly due to the release of chemicals from perturbed sludge. Source identification showed that most of the contaminants found in urban waterways were originated from nonpoint runoff, while cosmetics factories and hospitals were likely point sources for musks and antibiotics, respectively. Although the observed embryo toxicity could not be well explained by target contaminants, the present study showed a promising future of using passive samplers to evaluate chemical occurrence and aquatic toxicity concurrently. Zebrafish embryo toxicity significantly decreased after sewage treatment, but higher toxicity was observed for downstream samples, demonstrating that urban runoff may produce detrimental effects to aquatic life, particularly in rainy season. These results highlight the relevance of monitoring nonpoint source pollution along with boosting municipal sewage treatment infrastructure.
Показать больше [+] Меньше [-]Response of spatio-temporal changes in sediment phosphorus fractions to vegetation restoration in the degraded river-lake ecotone
2022
Yan, Zhiwei | Wu, Ling | Lv, Tian | Tong, Chao | Gao, Zhongyao | Liu, Yuan | Xing, Bin | Chao, Chuanxin | Li, Yang | Wang, Ligong | Liu, Chunhua | Yu, Dan
Phosphorus (P) is an essential element in the ecosystem and the cause of the eutrophication of rivers and lakes. The river-lake ecotone is the ecological buffer zone between rivers and lakes, which can transfer energy and material between terrestrial and aquatic ecosystems. Vegetation restoration of degraded river-lake ecotone can improve the interception capacity of P pollution. However, the effects of different vegetation restoration types on sediment P cycling and its mechanism remain unclear. Therefore, we seasonally measured the P fractions and physicochemical properties of sediments from different restored vegetation (three native species and one invasive species). The results found that vegetation restoration significantly increased the sediment total P and bioavailable P content, which increased the sediment tolerance to P pollution in river-lake ecotone. In addition, the total P content in sediments was highest in summer and autumn, but lower in spring and winter. The total P and bioavailable P contents in surface sediments were the highest. They decreased with increasing depth, suggesting that sediment P assimilation by vegetation restoration and the resulting litter leads to redistribution of P in different seasons and sediment depths. Microbial biomass-P (MBP), total nitrogen (TN), and sediment organic matter (SOM) are the main factors affecting the change of sediment phosphorus fractions. All four plants’ maximum biomass and P storage appeared in the autumn. Although the biomass and P storage of the invasive species Alternanthera philoxeroides were lower, the higher bioavailable P content and MBP values of the surface sediments indicated the utilization efficiency of sediment resources. These results suggest that vegetation restoration affects the distribution and circulation of P in river and lake ecosystems, which further enhances the ecological function of the river-lake ecotone and prevents the eutrophication and erosion of water and sediment in the river-lake ecotone.
Показать больше [+] Меньше [-]Mercury contamination level is repeatable and predicted by wintering area in a long-distance migratory seabird
2022
Bertram, Justine | Kürten, Nathalie | Bichet, Coraline | Schupp, Peter J. | Bouwhuis, Sandra
The environmental presence of mercury has dramatically increased over the past century, leading to increased uptake, especially by top predators such as seabirds. Understanding the exact sources of contamination requires an individual-level approach, which is especially challenging for species that migrate. We took such an approach and located the wintering areas of 80 common terns (Sterna hirundo) through tracking, and, across years, collected feathers grown in those areas to assess their mercury levels using atomic absorption spectrometry. Although feathers of males and females did not differ in their mercury level, we found the average feather mercury level to be highest in birds wintering in the Canary Current (3.87 μg g⁻¹), medium in birds wintering in the Guinea Current (2.27 μg g⁻¹) and lowest in birds wintering in the Benguela Current (1.96 μg g⁻¹). Furthermore, we found considerable inter-annual fluctuations in feather mercury levels, a within-individual repeatability of 41%, that the mercury levels of 17% of feather samples exceeded the admitted toxicity threshold of 5 μg g⁻¹, and that the overall mean concentration of 3.4 μg g⁻¹ exceeded that of other published reports for the species. Further studies therefore should assess whether these levels lead to individual-level carry-over effects on survival and reproductive performance.
Показать больше [+] Меньше [-]Effect of bisphenol S on testicular tissue after low-dose nursing exposure
2022
Fenclová, Tereza | Chemek, Marouane | Havránková, Jiřina | Kolinko, Yaroslav | Sudová, Vendula | Moravec, Jiří | Navrátilová, Jana | Klein, Pavel | Králíčková, Milena | Nevoral, Jan
Exposure to endocrine disruptors such as bisphenols, can lead to and be the explanation for idiopathic infertility. In our study, we assessed the effect of exposure to bisphenol S (BPS) via breast milk on the testicular tissue health of adult male mice. Milking dams were exposed to BPS through drinking water (0.216 ng g bw/day and 21.6 ng g bw/day) from post-natal day 0–15. Although there was no significant difference in testicular histopathology between the control and experimental groups, we observed an increase in the number of tight and gap junctions in the blood-testis barrier (BTB) of adult mice after nursing BPS exposure. Moreover, there was an increase in oxidative stress markers in adult testicular tissue of mice exposed during nursing. Our nursing model indicates that breast milk is a route of exposure to an endocrine disruptor that can be responsible for idiopathic male infertility through the damage of the BTB and weakening of oxidative stress resistance in adulthood.
Показать больше [+] Меньше [-]