Уточнить поиск
Результаты 1101-1110 из 1,953
Geochemical Behavior and Watershed Influences Associated with Sediment-Bound Mercury for South Dakota Lakes and Impoundments
2013
Betemariam, Hailemelekot H. | McCutcheon, Cindie M. | Davis, Arden D. | Stetler, Larry D. | DeSutter, Thomas M. | Penn, Michael R. | Stone, James J.
Sediment cores were collected from ten eutrophic lakes in South Dakota to determine the lateral extent of sediment-bound mercury (Hg) concentrations and to assess the relationship between watershed and land use characteristics with lake Hg fish tissue consumption advisory (>1.0 mg Hg/kg fish tissue) status. Advisory lakes were characterized as having higher sediment Hg and organic matter and lower total sulfur content compared to non-advisory lakes, and results highlight the importance of sulfide and organic carbon availability associated with potential Hg methylation biogeochemical processes. Advisory lakes generally had higher percentage of areal development and grasslands, higher catchment to lake area, and lower percentage of wetlands compared to non-advisory lakes. These results signify the importance of minimizing watershed sediment transport and associated organic carbon loading as effective Hg fish tissue lake management strategies.
Показать больше [+] Меньше [-]Challenges to Developing Methane Biofiltration for Coal Mine Ventilation Air: A Review
2013
Limbri, Hendy | Gunawan, Cindy | Rosche, Bettina | Scott, Jason
Coal mine methane is a significant greenhouse gas source as well as a potential lost energy resource if not effectively used. In recent years, mine ventilation air (MVA) capture and use has become a key element of research and development due to comparatively larger methane emissions by MVA than other coal mine sources. Technologies have been evaluated to treat the low methane concentrations in MVA such as thermal-based technologies or processing by biofiltration. This review initially considers the techniques available for treating the low methane concentrations encountered in MVA, after which it focuses on developments in biofiltration systems. Biofiltration represents a simple, energy-efficient, and cheap alternative to oxidize methane from MVA. Major factors influencing biofilter performance along with knowledge gaps in relation to its application to MVA are identified and discussed.
Показать больше [+] Меньше [-]Diethyl Phthalate Removal by Continuous-Flow Ozonation: Response Surface Modeling and Optimization
2013
Secula, Marius Sebastian | Barrot, Yvan | Cagnon, Benoit | Versaveau, Frederic | Chedeville, Olivier
An experimental design methodology was applied for response surface modeling and optimization of diethyl phthalate (DEP) removal from synthetic wastewater by continuous-flow ozonation. The five independent variables considered were the initial concentration of DEP, initial solution pH, liquid flow rate, gas flow rate, and ozone concentration in the inlet gas. Using the Box–Behnken design, two quadratic models were developed as a functional relationship between respectively DEP removal efficiency and ozone mass transfer and the independent variables considered. It was found that all the factors considered have a significant effect on the removal efficiency response, except for the gas flow rate which did not influence DEP removal in the ranges considered. The results show that the ozonation efficiency can be predicted and are in very good agreement with the experimental data. Optimal conditions for two different sets of constraints were determined.
Показать больше [+] Меньше [-]The Increased Contribution of Atmospheric Nitrogen Deposition to Nitrogen Cycling in a Rural Forested Area of Kyushu, Japan
2013
Chiwa, Masaaki | Enoki, Tsutomu | Higashi, Naoko | Kumagai, Tomo’omi | Otsuki, Kyoichi
Japan has been receiving increasing levels of atmospheric nitrogenous pollutants from the East Asian continent over the last few decades, so it is critical to evaluate the impact of this increased atmospheric nitrogen (N) deposition on N cycling even in rural forests. This study evaluated the contribution of the current level of atmospheric N deposition to N cycling in a rural forested area. Bulk precipitation and stream water were collected during 2007-2011 at the Shiiba Research Forest (SRF) located in the central Kyushu mountain range of southern Japan. Litterfall was also collected to investigate the contribution of atmospheric N deposition to total N input (litterfall N + atmospheric N deposition). The results showed that atmospheric depositions of both nitrate (NO3 -) and ammonium (NH4 +) were a few times higher during 2009-2011 than in 1991. This could be the result of additional N deposition from the increased long-range transport of nitrogenous pollutants from the East Asian continent. The current level of annual N deposition (9.7 kg N ha-1 year-1) at the SRF was comparable with that at many urban sites and was close to the reported threshold values causing N saturation in forest ecosystems. Although current atmospheric N deposition was an important component (23 %) of total N input (43 kg N ha -1 year-1) at the SRF, the concentrations of NO 3 - in stream water were consistently low (<10 μmol L-1). These results indicate that atmospheric N deposition is currently largely incorporated into forest ecosystems without excess N export from forested watersheds. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Adsorption of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source
2013
Yao, Hong | Lu, Jian | Wu, Jun | Lu, Zeyu | Wilson, P Chris | Shen, Yan
Adsorption of fluoroquinolone antibiotics using sludge-derived biochar made of various wastewater sludges was investigated. The sludge-derived biochar had relatively large Brunauer–Emmet–Teller specific surface areas that were beyond 110.0 m² g⁻¹ except the biochar made from the sludge collected from traditional sludge drying bed. The mesopore capacity was more than 57 % of the total pore capacity of all sludge-derived biochar except that made from the sludge dried through traditional sludge drying bed technique. High adsorption capacity of sludge-derived biochar was observed with a highest adsorption capacity of 19.80 ± 0.40 mg g⁻¹. High correlation between the adsorption capacity of sludge-derived biochar and the volatile content in the sludge source was observed. The Freundlich model (r ² values were in the range of 0.961–0.998) yielded the best fit with the experimental data of all the produced biochar. Fluoroquinolone antibiotics were readily adsorbed onto sludge-derived biochar. These findings suggest a new approach for the pollution control of fluoroquinolone antibiotics using low-cost sludge-derived biochar.
Показать больше [+] Меньше [-]A Comparative Study of Immobilization Techniques for Photocatalytic Degradation of Rhodamine B using Nanoparticles of Titanium Dioxide
2013
Kumar, Jatinder | Bansal, Ajay
The use of aqueous suspension of nanoparticles of titanium dioxide for photocatalytic removal of pollutants is not suitable for industrial applications due to the inconvenient and expensive separation of nanoparticles of titanium dioxide for reuse. The nanosized titanium dioxide needs to be immobilized on the support for improving the efficiency and economics of the photocatalytic process. In the present paper, nanoparticles of titanium dioxide have been immobilized on the surface of the support using three different techniques. The immobilized films of titanium dioxide have been characterized using X-ray diffraction and scanning electron microscopy to notice any change in the phase composition and photocatalytic properties of the titanium dioxide after immobilization on the support. A photocatalytic test has been performed under similar reaction conditions to compare the photocatalytic performance of the films of immobilized titanium dioxide prepared using different techniques.
Показать больше [+] Меньше [-]Bacterial Diversity at Abandoned Uranium Mining and Milling Sites in Bulgaria as Revealed by 16S rRNA Genetic Diversity Study
2013
Radeva, Galina | Kenarova, Anelia | Bachvarova, Velina | Flemming, Katrin | Popov, Ivan | Vassilev, Dimitar | Selenska-Pobell, Sonja
Radionuclide and heavy metal contamination influences the composition and diversity of bacterial communities, thus adversely affecting their ecological role in impacted environments. Bacterial communities from uranium and heavy metal-contaminated soil environments and mine waste piles were analyzed using 16S rRNA gene retrieval. A total of 498 clones were selected, and their 16S rDNA amplicons were analyzed by restriction fragment length polymorphism, which suggested a total of 220 different phylotypes. The phylogenetic analysis revealed Proteobacteria, Acidobacteria, and Bacteroidetes as the most common bacterial taxa for the three sites of interest. Around 20-30 % of the 16S rDNA sequences derived from soil environments were identified as Proteobacteria, which increased up to 76 % (mostly Gammaproteobacteria) in bacterial communities inhabiting the mine waste pile. Acidobacteria, known to be common soil inhabitants, dominated in less contaminated environments, while Bacteroidetes were more abundant in highly contaminated environments regardless of the type of substratum (soil or excavated gravel material). Some of the sequences affiliated with Verrucomicrobia, Actinobacteria, Chloroflexi, Planctomycetes, and Candidate division OP10 were site specific. The relationship between the level of contamination and the rate of bacterial diversity was not linear; however, the bacterial diversity was generally higher in soil environments than in the mine waste pile. It was concluded that the diversity of the bacterial communities sampled was influenced by both the degree of uranium and heavy metal contamination and the site-specific conditions. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Industry Wide Risk Assessment: A Case Study of Cu in Australian Vineyard Soils
2013
Wightwick, Adam M. | Reichman, Suzanne M. | Menzies, Neal W. | Allinson, Graeme
There are concerns over the environmental risks posed by Cu-based fungicide use, and there is community and regulatory pressure on viticultural industries to restrict the use of Cu-based fungicides. This study assesses the relative environmental risks posed by Cu-based and alternative synthetic organic fungicide compounds used in Australian vineyards, giving particular consideration to their adverse effects on soil microbial activity and how risks vary across different viticultural regions. The study was guided by key steps in the ecological risk assessment framework to analyse the risks of Cu-based fungicides towards soil organisms and involved four key steps: (1) problem formulation, (2) analysis (characterise exposure and effects), (3) risk characterisation and (4) risk assessment. There is evidence of a build-up of Cu-based fungicide residues in Australian vineyard soils, although this has occurred over many years, thus allowing the availability of Cu in the soil to be attenuated over time due to aging processes. On the whole, it appears that Cu-based fungicide residues are currently unlikely to pose a significant risk to soil organisms in Australian vineyard soils. However, there are indicators that continued applications of Cu-based fungicides may well have implications on the use of impacted land for sustainable agricultural production. Further detailed studies are required to enable a more definitive characterisation of the risks posed by Cu-based fungicide residues, such as establishing a clearer link between the laboratory and agricultural settings, investigating effects on other indicators of microbial activity and biodiversity and understanding the resilience of soil microbes to additional stressors. The challenge for agricultural industries and governments, both in Australia and globally, is to formulate appropriate plans to reduce the risks associated with Cu-based fungicide use. Further research is required to consider the relative risks of a wide range of alternative fungicide compounds to ensure that they pose a lower environmental risk than the Cu-based fungicides they may replace.
Показать больше [+] Меньше [-]Chemical Modification of Imperata cylindrica Leaf Powder for Heavy Metal Ion Adsorption
2013
Li, Zhimin | Teng, Tjoon Tow | Alkarkhi, Abbas F. M. | Rafatullah, Mohd | Low, Ling Wei
Imperata cylindrica leaf was used as raw material to prepare two different adsorbents through chemical modification by using sulfuric acid and phosphoric acid. These two adsorbents, sulfuric acid-modified I. cylindrica leaf-based adsorbent (SIC) and phosphoric acid-modified I. cylindrica leaf-based adsorbent (PIC), were used to adsorb nickel ions (Ni²⁺) from aqueous solutions. The I. cylindrica leaf-based adsorbent and modified I. cylindrica leaf-based adsorbents were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Different operational parameters such as initial solution pH, adsorbent size, adsorbent dosage, initial Ni²⁺ ion concentration, and temperature were studied. The adsorption isotherm and the adsorption kinetics were studied systematically. Based on the FT-IR spectrum before and after adsorption of Ni²⁺ ions, the adsorption mechanism involved both ion exchange and complexation between Ni²⁺ ions and functional groups on the surface of adsorbents. There was no sulfur and phosphorus detected in the aqueous solutions after adsorption. Therefore, SIC and PIC are effective in adsorbing Ni²⁺ ions and will not cause secondary pollution to the environment.
Показать больше [+] Меньше [-]Application of Reclaimed Wastewater in the Irrigation of Rosebushes
2013
The use of reclaimed wastewater in agriculture can be a solution for regions with water shortages or low rainfall periods; besides fulfilling the crop's water needs, it would also promote the recycle of nutrients. However, care should be taken regarding soil salinization, especially in closed environments such as greenhouses for the cultivation of ornamental plants. The domestic effluents are rich in sodium which can accumulate on soil and cause soil sealing. This study evaluated the use of effluents from anaerobic filters and intermittent sand filters in the production of rosebushes (Rosa hybrida "Ambiance"). The crop yield of the rosebushes irrigated with reclaimed wastewater exceeded the one obtained with traditional cultivation, reaching a value 31.8 % higher when employing nitrified effluent originated from intermittent sand filters, with no difference in the product quality. The salinity levels are below the critical limits found in the literature; however, there was a significant increase compared to the irrigation with drinking water. © 2013 The Author(s).
Показать больше [+] Меньше [-]