Уточнить поиск
Результаты 1101-1110 из 7,990
Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth
2021
Wang, Chuanxi | Liu, Xiaofei | Li, Jing | Yue, Le | Yang, Hanyue | Zou, Hua | Wang, Zhenyu | Xing, Baoshan
The innovative and sustainable technologies are highly needed to decrease serious environmental problems from current agriculture. Herein, the green and biosafe copper-based nano-agriculture was described for tomato production. Prepared Cu nanoclusters (NCs) showed small size (3.0 ± 0.5 nm) and high bioavailability. At low concentration (1 mg kg⁻¹) in soil, Cu NCs improved the activities of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) in the tomato plants, which could help to slow down leaf aging, increase photosynthesis and carbohydrates content by 19.4 % and 14.9 %, respectively. Cu NCs promoted the roots' growth, especially increasing the root tip’ number, which might contribute to the increase in absorption of macronutrients (K, Mg and P) and micronutrients (B, Mn, Cu and Zn). The Cu NCs (1 mg kg⁻¹) promoted tomato growth and increased the tomato fruit yields by 12.2 % compared to the control. Moreover, the tomato fruit qualities had been improved meanwhile the accumulation of Cu in fruits was not observed. These findings indicate that the Cu NCs have potential to be safely applied for tomato production.
Показать больше [+] Меньше [-]Autophagy in Sertoli cell protects against environmental cadmium-induced germ cell apoptosis in mouse testes
2021
Zhou, Guo-Xiang | Zhu, Hua-Long | Shi, Xue-Ting | Nan, Yuan | Liu, Wei-Bo | Dai, Li-Min | Xiong, Yong-Wei | Yi, Song-Jia | Cao, Xue-Lin | Xu, De-Xiang | Wang, Hua
Cadmium (Cd) was an environmental pollutant, which could result in germ cell apoptosis in testes. Sertoli-germ cell communication was vital for germ cell development and maturity. However, little was known about the effect of Sertoli cell autophagy on Cd-induced germ cell apoptosis. Here, we used male Amh-Cre+/Atg5ᶠˡᵒˣ/ᶠˡᵒˣ (Atg5⁻/⁻) mice, loss of autophagy-related gene 5 (Atg5) in testicular Sertoli cells, to explore the obscure effects. Atg5⁻/⁻ and Wild-type (WT) mice were given with cadmium chloride (CdCl₂, 2.0 mg/kg) for 0–24 h. Our results showed that Cd triggered testicular germ cell apoptosis, as evidenced by the increment of TUNEL-labeled germ cells, cleaved caspase3 and cleaved poly (ADP-ribose) polymerase protein level. Additionally, Cd induced testicular autophagy, as determined by elevating the level of autophagy-related proteins, including Atg5, Atg7, LC3B-II, and the gathering of LC3 puncta. 3-methyladenine, a specific autophagy inhibitor, exacerbated Cd-caused germ cell apoptosis. Inversely, rapamycin, an autophagy inducer, relieved Cd-stimulated germ cell apoptosis. Interestingly, we found that autophagy in Sertoli cells was activated in Cd-treated WT mouse testes as evidenced by the increment of LC3 puncta surrounding SOX9, a specific Sertoli cell marker. More importantly, loss of autophagy in Sertoli cells aggravated Cd-triggered germ cell apoptosis. Taken together, these data indicate that autophagy in Sertoli cells alleviates Cd-triggered germ cell apoptosis in mouse testes.
Показать больше [+] Меньше [-]Roads with underlying tar asphalt - spreading, bioavailability and toxicity of their polycyclic aromatic hydrocarbons
2021
Kumpiene, Jurate | Larsson, Martin Oscar | Carabante, Ivan | Arp, Hans Peter H.
Some of the older Swedish roads contain road tar underneath a surface layer of bituminous asphalt. This road tar, also known as tar asphalt, contains large amounts of polycyclic aromatic hydrocarbons (PAHs). There is concern about PAHs spreading from the bottom layers of these older roads to the surrounding environment, and that because of this spreading road tar asphalt should not be recycled but rather placed in landfills. However, a risk assessment of PAH spreading below roads has not yet been conducted. The first aim of this study was to assess this potential spreading of PAHs from underlying tar asphalt to the sand beneath, the soil next to the roads, as well as nearby groundwater. The second aim was to measure the bioavailability and estimate the toxicity of PAHs in all relevant media using polyoxymethylene (POM) passive samplers. Four road sections and nearby groundwater in northern Sweden were investigated, including a control road without tar asphalt. PAHs were detected in all analysed solid media at varying concentrations: in asphalt from 2.3 to 4800 mg kg⁻¹, in underlying sand from <1.5 to 460 mg kg⁻¹ and in slope soil from <1.5 to 36 mg kg⁻¹. However, the spread of PAHs from the asphalt to roadside soil and groundwater was very limited. Groundwater at most of the road sections contained very low or non-detectable levels of PAHs (<0.08–0.53 μg L⁻¹, excluding one site where fuel contamination is hypothesized). The PAHs generally showed low bioavailability. Only asphalt with PAH content >1200 mg kg⁻¹ exhibited bioavailable concentrations that exceeded threshold concentrations for serious risk. The most PAH contaminated sand and soil samples exhibited low toxicity when considering bioavailability, only in some cases exceeding chronic toxicity threshold concentrations. These results were compared with the Swedish EPA's guideline values for PAH in contaminated soil, which is shown to overpredict toxicity for these sites. Further research on the leaching and transportation processes of PAHs from subsurface tar asphalt is recommended for developing risk analysis approaches.
Показать больше [+] Меньше [-]Estimating NOx removal capacity of urban trees using stable isotope method: A case study of Beijing, China
2021
Gong, Cheng | Xian, Chaofan | Cui, Bowen | He, Guojin | Wei, Mingyue | Zhang, Zhaoming | Ouyang, Z. (Zhiyun)
It is widely recognized that green infrastructures in urban ecosystems provides important ecosystem services, including air purification. The potential absorption of nitrogen oxides (NOₓ) by urban trees has not been fully quantified, although it is important for air pollution mitigation and the well-being of urban residents. In this study, four common tree species (Sophora japonica L., Fraxinus chinensis Roxb., Populus tomentosa Carrière, Sabina chinensis (L.)) in Beijing, China, were studied. The dual stable isotopes (¹⁵N and ¹⁸O) and a Bayesian isotope mixing model were applied to estimate the sources contributions of potential nitrogen sources to the roadside trees based on leaf and soil sampling in urban regions. The following order of sources contributions was determined: soil > dry deposition > traffic-related NOₓ. The capacity of urban trees for NOₓ removal in the city was estimated using a remote sensing and GIS approach, and the removal capacity was found to range from 0.79 to 1.11 g m⁻² a⁻¹ across administrative regions, indicating that 1304 tons of NOₓ could be potentially removed by urban trees in 2019. Our finding qualified the potential NOₓ removal by urban trees in terms of atmospheric pollution mitigation, highlighting the role of green infrastructure in air purification, which should be taken into account by stakeholders to manage green infrastructure as the basis of a nature-based approach.
Показать больше [+] Меньше [-]Simultaneous observation of atmospheric peroxyacetyl nitrate and ozone in the megacity of Shanghai, China: Regional transport and thermal decomposition
2021
Zhang, Gen | Jing, Shengao | Xu, Wanyun | Gao, Yaqin | Yan, Chao | Liang, Linlin | Huang, Cheng | Wang, Hongli
Atmospheric peroxyacetyl nitrate (PAN) and ozone (O₃) are two typical indicators for photochemical pollution that have adverse effects on the ecosystem and human health. Observation networks for these pollutants have been expanding in developed regions of China, such as North China Plain (NCP) and Pearl River Delta (PRD), but are sparse in Yangtze River Delta (YRD), meaning their concentration and influencing factors remain poorly understood. Here, we performed a one-year measurement of atmospheric PAN, O₃, particulate matter with aerodynamic diameter smaller than 2.5 μm (PM₂.₅), nitrogen oxides (NOₓ), carbon monoxide (CO), and meteorological parameters from December 2016 to November 2017 in Shanghai. Overall, high hourly maximum PAN and O₃ were found to be 7.0 and 185 ppbv in summer, 6.2 and 146 ppbv in autumn, 5.8 and 137 ppbv in spring, and 6.0 and 76.7 ppbv in winter, respectively. Continental air masses probably carried atmospheric pollutants to the sampling site, while frequent maritime winds brought in less polluted air masses. Furthermore, positive correlations (R: 0.72–0.85) between PAN and O₃ were found in summer, indicating a predominant role of photochemistry in their formation. Unlike in summer, weak or no correlations between PAN and O₃ were featured during the other seasons, especially in winter, due to their different loss pathways. Unexpectedly, positive correlations between PAN and PM₂.₅ were found in all seasons. During summer, moderate correlation could be attributed to the strong photochemistry acting as a common driver in the formation of secondary aerosols and PAN. During winter, high PM₂.₅ might promote PAN production through HONO production, hence resulting in a good positive correlation. Additionally, the loss of PAN by thermal decomposition (TPAN) only accounted for a small fraction (ca. 1%) of the total (PAN + TPAN) during a typical winter episode, while it significantly reached 14.4 ppbv (71.1% of the total) in summer.
Показать больше [+] Меньше [-]Artificial light at night (ALAN) affects the downstream movement behaviour of the critically endangered European eel, Anguilla anguilla
2021
Vowles, Andrew S. | Kemp, Paul S.
Artificial light at night (ALAN) is considered one of the most pervasive forms of environmental pollution. It is an emerging threat to freshwater biodiversity and can influence ecologically important behaviours of fish. The European eel (Anguilla anguilla) is a critically endangered catadromous species that migrates downstream to the ocean to spawn in the Sargasso Sea. Given the pervasive nature of ALAN, many eel will navigate through artificially lit routes during their seaward migration, and although considered negatively phototactic, their response has yet to be quantified. We investigated the response of downstream moving European eel to simulated ALAN using a Light Emitting Diode unit in an experimental flume. We presented two routes of passage under: (1) a dark control (both channels unlit), (2) low ALAN (treatment channel lit to ca. 5 lx), or (3) high ALAN (treatment channel lit to ca. 20 lx). Eel were: (i) more likely to reject an illuminated route when exposed to high levels of ALAN; (ii) less likely to select the illuminated channel when given a choice; and (iii) passed downstream more rapidly when the illuminated route was selected. This study quantified the response of the critically endangered European eel to ALAN under an experimental setting, providing the foundations for future field based research to validate these findings, and offering insight on the ecological impacts of this major environmental pollutant and driver of global change.
Показать больше [+] Меньше [-]Effects of sulfamethoxazole on coupling of nitrogen removal with nitrification in Yangtze Estuary sediments
2021
Chen, Cheng | Yin, Guoyu | Hou, Lijun | Liu, Min | Jiang, Yinghui | Zheng, Dongsheng | Gao, Dengzhou | Liu, Cheng | Zheng, Yanling | Han, Ping
Coupling of nitrogen removal processes with nitrification (NRₙ) are vital synergistic nitrogen elimination mechanisms in aquatic environments. However, the effects of antibiotics on NRₙ are not well known. In the present work, 20-day continuous-flow experiments combined with ¹⁵N tracing techniques and quantitative PCR were performed to simulate the impact of sulfamethoxazole (SMX, a sulfonamide antibiotic) with near in situ concentration on NRₙ processes in sediments of Yangtze Estuary. Results showed that SMX with near in situ concentration significantly decreased NRₙ, NRw (uncoupling of nitrogen removal processes with nitrification) and actual nitrogen removal rates via inhibiting nitrogen transformation functional genes (AOB, narG, nirS, nosZ) and anammox 16S rRNA gene, while the coupling links between nitrification and nitrogen removal processes were not broken by the exposure. The proportion of NRₙ in total nitrogen removal processes decreased by approximately 10% with SMX addition, due to the different inhibition on AOB, denitrifying genes and anammox 16S rRNA gene. N₂O production and nitrite accumulation remarkably increased with SMX addition under simultaneous nitrification and denitrification, and they strongly correlated with each other. The more severely inhibition on nirS gene (13.6–19.8%) than Nitrospira nxrB gene (0.3–8.2%) revealed that the increased nitrite accumulation with SMX addition mainly occurred in heterotrophic denitrification, suggesting that the increased N₂O production was dominated by the heterotrophic nitrite reduction. Moreover, we estimated that the ratio of external inorganic N eliminated by actual nitrogen removal can upgrade to 6.4–7.4% under circumstances of no inhibition by SMX. This study revealed the effects of SMX with near in situ concentration on NRₙ processes and illustrated the microbial mechanism on functional genes level. Our results highlighted the inhibitory effects of SMX on NRₙ may contribute to reactive N retention and N₂O production in estuarine and coastal ecosystems.
Показать больше [+] Меньше [-]Recent trends in premature mortality and health disparities attributable to ambient PM2.5 exposure in China: 2005–2017
2021
Liu, Ming | Saari, Rebecca K. | Zhou, Gaoxiang | Li, Jonathan | Han, Ling | Liu, Xiangnan
In the past decade, particulate matter with aerodynamic diameter less than 2.5 μm (PM₂.₅) has reached unprecedented levels in China and posed a significant threat to public health. Exploring the long-term trajectory of the PM₂.₅ attributable health burden and corresponding disparities across populations in China yields insights for policymakers regarding the effectiveness of efforts to reduce air pollution exposure. Therefore, we examine how the magnitude and equity of the PM₂.₅-related public health burden has changed nationally, and between provinces, as economic growth and pollution levels varied during 2005–2017. We derive long-term PM₂.₅ exposures in China from satellite-based observations and chemical transport models, and estimate attributable premature mortality using the Global Exposure Mortality Model (GEMM). We characterize national and interprovincial inequality in health outcomes using environmental Lorenz curves and Gini coefficients over the study period. PM₂.₅ exposure is linked to 1.8 (95% CI: 1.6, 2.0) million premature deaths over China in 2017, increasing by 31% from 2005. Approximately 70% of PM₂.₅ attributable deaths were caused by stroke and IHD (ischemic heart disease), though COPD (chronic obstructive pulmonary disease) and LRI (lower respiratory infection) disproportionately affected poorer provinces. While most economic gains and PM₂.₅-related deaths were concentrated in a few provinces, both gains and deaths became more equitably distributed across provinces over time. As a nation, however, trends toward equality were more recent and less clear cut across causes of death. The rise in premature mortality is due primarily to population growth and baseline risks of stroke and IHD. This rising health burden could be alleviated through policies to prevent pollution, exposure, and disease. More targeted programs may be warranted for poorer provinces with a disproportionate share of PM₂.₅-related premature deaths due to COPD and LRI.
Показать больше [+] Меньше [-]A comparative study of immobilizing ammonium molybdophosphate onto cellulose microsphere by radiation post-grafting and hybrid grafting for cesium removal
2021
Dong, Zhen | Du, Jifu | Chen, Yanliang | Zhang, Manman | Zhao, Long
Ammonium molybdophosphate (AMP) exhibits high selectivity towards Cs but it cannot be directly applied in column packing, so it is necessary to prepare AMP–based adsorbents into an available form to improve its practicality. This work provided two AMP immobilized cellulose microspheres (MCC@AMP and MCC-g-AMP) as adsorbents for Cs removal by radiation grafting technique. MCC-g-AMP was prepared by radiation graft polymerization of GMA on microcrystalline cellulose microspheres (MCC) followed by reaction with AMP suspension, and MCC@AMP was synthesized by radiation hybrid grafting of AMP and GMA onto MCC through one step. The different structures and morphologies of two adsorbents were characterized by FTIR and SEM. The adsorption properties of two adsorbents against Cs were investigated and compared in batch and column experiments under different conditions. Both adsorbents were better obeyed pseudo-second-order kinetic model and Langmuir model. MCC-g-AMP presented faster adsorption kinetic and more stable structure, whereas MCC@AMP presented more facile synthesis and higher adsorption capacity. MCC@AMP was pH independent in the range of pH 1–12 but MCC-g-AMP was sensitive to pH for Cs removal. The saturated column adsorption capacities of MCC@AMP and MCC-g-AMP were 5.4 g-Cs/L-ad and 0.75 g-Cs/L-ad in column adsorption experiments at SV 10 h⁻¹. Both adsorbents exhibited very high radiation stability and can maintain an adsorption capacity of >85% even after 1000 kGy γ-irradiation. On the basis, two AMP-loaded adsorbents possessed promising application in removal of Cs from actual contaminated groundwater. These findings provided two efficient adsorbents for treatment of Cs in radioactive waste disposal.
Показать больше [+] Меньше [-]Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos
2021
Lee, Hyojin | Ko, Eun | Shin, Sooim | Choi, Moonsung | Kim, Ki-Tae
Organochlorine pesticides (OCPs) have been reported to cause mitochondrial dysfunction. However, most studies reported its mitochondrial toxicity with respect to a single form, which is far from the environmentally relevant conditions. In this study, we exposed zebrafish embryos to five OCPs: chlordane, heptachlor, p,p’-dichlorodiphenyltrichloroethane (p,p’-DDT), β-hexachlorocyclohexane (β-HCH), and hexachlorobenzene (HCB), as well as an equal ratio mixture of these OCPs. We evaluated mitochondrial function, including oxygen consumption, the activity of mitochondrial complexes, antioxidant reactions, and expression of genes involved in mitochondrial metabolism. Oxygen consumption rate was reduced by exposure to chlordane, and β-HCH, linking to the increased activity of specific mitochondrial complex I and III, and decreased GSH level. We found that these mitochondrial dysfunctions were more significant in the exposure to the OCP mixture than the individual OCPs. On the mRNA transcription level, the individual OCPs mainly dysregulated the metabolic cycle (i.e., cs and acadm), whereas the OCP mixture disrupted the genes related to mitochondrial oxidative phosphorylation (i.e., sdha). Consequently, we demonstrate that the OCP mixture disrupts mitochondrial metabolism by a different molecular mechanism than the individual OCPs, which warrants further study to evaluate mitochondrial dysregulation by chronic exposure to the OCP mixture.
Показать больше [+] Меньше [-]