Уточнить поиск
Результаты 1111-1120 из 7,290
Occurrence and distribution of organophosphate flame retardants in seawater and sediment from coastal areas of the East China and Yellow Seas Полный текст
2022
Fang, Lidan | Liu, Aifeng | Zheng, Minggang | Wang, Ling | Hua, Yi | Pan, Xin | Xu, Hongyan | Chen, Xiangfeng | Lin, Yongfeng
Organophosphates (OPEs) are manmade organic pollutants that are widely used as flame retardants, plasticizers, and antifoaming and hydraulic agents. In this study, seven OPEs in seawater and sediment from the Yellow Sea and East China Sea were determined to study the distribution and diffusion behavior, and to evaluate the environmental risks. The ΣOPEs in the seawater and sediments ranged from below the method detection limit (<MDL) to 497.40 ng/L and from < MDL to 66.50 ng/g dw, respectively. Tri-n-butyl phosphate (TnBP), tris-(1, 3-Dichloro-2-Propyl) phosphate (TDCPP), and tri-meta-cresyl phosphate (TmCP) were the dominant OPEs in the seawater and sediments. OPEs were mainly distributed in coastal areas and the South Yellow Sea, indicating that they are mainly affected by land-based pollution and ocean currents. Fugacity analysis shows that tri-para-cresyl phosphate (TpCP) was in a state of equilibrium, while TDCPP, TnBP, and TmCP other OPEs tended to diffuse from sediment to water. The diffusion behavior of OPEs is mainly affected by their chemical properties. Hazard quotient (HQ) values of TmCP and TpCP in sediment samples were >1.0, indicating high ecological risks to aquatic organisms.
Показать больше [+] Меньше [-]Organic aerosol compositions and source estimation by molecular tracers in Dushanbe, Tajikistan Полный текст
2022
Chen, Pengfei | Kang, Shichang | Zhang, Lanxin | Abdullaev, Sabur F. | Wan, Xin | Zheng, Huijun | Maslov, Vladimir A. | Abdyzhapar uulu, Salamat | Safarov, Mustafo S. | Tripathee, Lekhendra | Li, Yizhong
To elucidate the molecular composition and sources of organic aerosols in Central Asia, carbonaceous compounds, major ions, and 15 organic molecular tracers of total suspended particulates (TSP) were analyzed from September 2018 to August 2019 in Dushanbe, Tajikistan. Extremely high TSP concentrations (annual mean ± std: 211 ± 131 μg m⁻³) were observed, particularly during summer (seasonal mean ± std: 333 ± 183 μg m⁻³). Organic carbon (OC: 11.9 ± 7.0 μg m⁻³) and elemental carbon (EC: 5.1 ± 2.2 μg m⁻³) exhibited distinct seasonal variations from TSP, with the highest values occurring in winter. A high concentration of Ca²⁺ was observed (11.9 ± 9.2 μg m⁻³), accounting for 50.8% of the total ions and reflecting the considerable influence of dust on aerosols. Among the measured organic molecular tracers, levoglucosan was the predominant compound (632 ± 770 ng m⁻³), and its concentration correlated significantly with OC and EC during the study period. These findings highlight biomass burning (BB) as an important contributor to the particulate air pollution in Dushanbe. High ratios of levoglucosan to mannosan, and syringic acid to vanillic acid suggest that mixed hardwood and herbaceous plants were the main burning materials in the area, with softwood being a minor one. According to the diagnostic tracer ratio, OC derived from BB constituted a large fraction of the primary OC (POC) in ambient aerosols, accounting for an annual mean of nearly 30% and reaching 63% in winter. The annual contribution of fungal spores to POC was 10%, with a maximum of 16% in spring. Measurements of plant debris, accounting for 3% of POC, divulged that these have the same variation as fungal spores.
Показать больше [+] Меньше [-]Change in diagnostic ratios in expelled oils and residual extracts during semi-open pyrolysis experiments of an organic-rich shale Полный текст
2022
Li, Zhongxuan | Huang, Haiping | Wang, Qianru | Zheng, Lunju
In order to investigate the effectiveness of diagnostic ratios in polycyclic aromatic hydrocarbon (PAH) source discrimination, semi-open pyrolysis experiments have been performed on an organic-rich, immature shale from the Winnipegosis Formation in southeastern Saskatchewan, Western Canada Sedimentary Basin. The concentrations and distributions of PAHs in expelled oils and residual extracts change drastically with increasing pyrolysis temperatures. The difficulty and inconsistency commonly encountered by using diagnostic ratios for PAH source identification in environmental samples seem to be rooted in the great variation of the diagnostic ratios themselves under different formation temperatures. No single diagnostic ratio allows a simple segregation of PAHs into petrogenic or pyrogenic sources. Some diagnostic ratios such as anthracene/phenanthrene and benz[a]anthracene/chrysene compound pairs are mostly effective for low-temperature pyrolysis, whereas indeno[1,2,3-cd]pyrene/benzo[ghi]perylene, aromatic hydrocarbon ring number distribution and degree of alkylation are mainly valid for high-temperature pyrolysis. The diagnostic ratios based on fluoranthene/pyrene, benzo[bk]fluoranthene/benz[a]pyrene compound pairs enjoy limited validity over a narrow pyrolysis range, whereas parameters derived from aromatic hydrocarbon ring number distribution, degree of alkylation and 1,7-/(2,6- + 1,7-dimentylphenanthrene) may be undistinguishable between petrogenesis and low-temperature pyrolysis. The apparent temperature-related variability must be taken into account when using the diagnostic ratios for source identification purposes. Multiple molecular markers need to be carefully selected to confirm the results obtained with PAH diagnostic ratios. Mechanical use of diagnostic ratios most likely leads to misinterpretation of environmental samples.
Показать больше [+] Меньше [-]The strategy for estrogen receptor mediated-risk assessment in environmental water: A combination of species sensitivity distributions and in silico approaches Полный текст
2022
Lv, Xiaomei | Wu, Yicong | Chen, Guilian | Yu, Lili | Zhou, Yi | Yu, Yingxin | Lan, Shanhong | Hu, Junjie
Risk assessment for molecular toxicity endpoints of environmental matrices may be a pressing issue. Here, we combined chemical analysis with species sensitivity distributions (SSD) and in silico docking for multi-species estrogen receptor mediated-risk assessment in water from Dongjiang River, China. The water contains high levels of phenolic endocrine-disrupting chemicals (PEDCs) and phthalic acid esters (PAEs). The concentration of ∑₄PEDCs and ∑₆PAEs ranged from 2202 to 3404 ng/L and 834–4368 ng/L, with an average of 3241 and 2215 ng/L, respectively. The SSD approach showed that 4-NP, BPA, E2 of PEDCs, and DBP, DOP, and DEHP could severely threaten the aquatic ecosystems, while most other target compounds posed low-to-medium risks. Moreover, binding affinities from molecular docking among PEDCs, PAEs, and estrogen receptors (ERα, Erβ, and GPER) were applied as toxic equivalency factors. Estrogen receptor-mediated risk suggested that PEDCs were the main contributors, containing 53.37–69.79% of total risk. They potentially pose more severe estrogen-receptor toxicity to zebrafish, turtles, and frogs. ERβ was the major contributor, followed by ERα and GPER. This study is the first attempt to assess the estrogen receptor-mediated risk of river water in multiple aquatic organisms. The in silico simulation approach could complement toxic effect evaluations in molecular endpoints.
Показать больше [+] Меньше [-]Integrated biotechnology to mitigate green tides Полный текст
2022
Ren, Cheng-Gang | Liu, Zheng-Yi | Zhong, Zhi-Hai | Wang, Xiao-Li | Qin, Song
Around the world, green tides are happening with increasing frequency because of the dual effects of increasingly intense human activity and climate change; this leads to significant impacts on marine ecology and economies. In the last decade, the world's largest green tide, which is formed by Ulva/Enteromorpha porifera, has become a recurrent phenomenon every year in the southern Yellow Sea (China), and it has been getting worse. To alleviate the impacts of such green tide outbreaks, multiple measures need to be developed. Among these approaches, biotechnology plays important roles in revealing the outbreak mechanism (e.g., molecular identification technology for algal genotypes), controlling and preventing outbreaks at the origin sites (e.g., technology to inhibit propagation), and utilizing valuable algal biomass. This review focuses on the various previously used biotechnological approaches that may be applicable to worldwide seaweed blooms that result from global climate change and environmental degradation.
Показать больше [+] Меньше [-]Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level Полный текст
2022
Amariei, Georgiana | Rossal S., J. Roberto (Julio Roberto Rossal Salazar) | Fernández-Piñas, Francisca | Koelmans, Albert A.
Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level Полный текст
2022
Amariei, Georgiana | Rossal S., J. Roberto (Julio Roberto Rossal Salazar) | Fernández-Piñas, Francisca | Koelmans, Albert A.
Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R² = 0.868–0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.
Показать больше [+] Меньше [-]Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level Полный текст
2022
Amariei, G. | Rosal, Roberto | Fernandez-Pinas, Francisca | Koelmans, A.A.
Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R2 = 0.868–0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.
Показать больше [+] Меньше [-]The first plastic produced, but the latest studied in microplastics research: The assessment of leaching, ecotoxicity and bioadhesion of Bakelite microplastics Полный текст
2022
Klun, Barbara | Rozman, Ula | Ogrizek, Monika | Kalčíková, Gabriela
Bakelite, the first synthetic plastic, is a rather unexplored material in the field of ecotoxicology, despite its long production and use. The aim of this study was to investigate the ecotoxicity of Bakelite microplastics (before and after leaching) and its leachates on four aquatic organisms: the crustacean Daphnia magna, the plant Lemna minor, the bacterium Allivibrio fischeri and the alga Pseudokirchneriella subcapitata. Bakelite microplastics before and after leaching and leachates affected all organisms, but to varying degrees. Leachates showed increased ecotoxicity to Daphnia magna, while Pseudokirchneriella subcapitata was more affected by particles. For Lemna minor and Allivibrio fischeri, the effects of particles before leaching and leachate were comparable, while the negative effect of particles after leaching was minimal or not present. All leachates were analysed, and phenol and phenol-like compounds were the predominant organics found. In addition, bioadhesion of Bakelite microplastics to the surface of Daphnia magna and Lemna minor was confirmed, but the particles were mainly weakly adhered. Results of this study suggest that, in addition to the recently studied microplastics from consumer products (e.g. from polyethylene and polystyrene), microplastics from industrial plastics such as Bakelite may be of increasing concern, primarily due to leaching of toxic chemicals.
Показать больше [+] Меньше [-]PM2.5 induces the distant metastasis of lung adenocarcinoma via promoting the stem cell properties of cancer cells Полный текст
2022
Pan, Junyi | Xue, Yueguang | Li, Shilin | Wang, Liuxiang | Mei, Jie | Ni, Dongqi | Jiang, Jipeng | Zhang, Meng | Yi, Shaoqiong | Zhang, Rong | Ma, Yongfu | Liu, Yang | Liu, Ying
Lung cancer is the most common cancer in China and second worldwide, of which the incidence of lung adenocarcinoma is rising. As an independent factor, air pollution has drawn the attention of the public. An increasing body of studies has focused on the effect of PM₂.₅ on lung adenocarcinoma; however, the mechanism remains unclear. We collected the PM₂.₅ in two megacities, Beijing (BPM) and Shijiazhuang (SPM), located in the capital of China, and compared the different components and sources of PM₂.₅ in the two cities. Vehicle emissions are the primary sources of BPM, whereas SPM is industrial emissions. We found that chronic exposure to PM₂.₅ promotes the tumorigenesis and metastasis of lung adenocarcinoma in patient-derived xenograft (PDX) models, as well as the migration and invasion of lung adenocarcinoma cell lines. SPM has more severe effects in vivo and in vitro. The underlying mechanisms are related to the stem cell properties of cancer cells, the epithelial-mesenchymal transition (EMT) process, and the corresponding miRNAs. It is hopeful to provide a theoretical basis for improving air pollution in China, especially in the capital area, and is of the significance of long-term survival of lung cancer patients.
Показать больше [+] Меньше [-]Pyrolysis of hydrothermally dewatering sewage sludge: Highly efficient peroxydisulfate activation of derived biochar to degrade diclofenac Полный текст
2022
Wang, Teng | Zhou, Yi | Xue, Yongjie | Sang, Tianmeng | Ren, Lu | Chen, Si | Liu, Jingxin | Mei, Meng | Li, Jinping
The resource utilization of sewage sludge can solve its disposal issue essentially. Meanwhile the removal of diclofenac (DCF) in wastewater is an emerging environmental problem. In this study, a novel strategy of sludge utilizing via hydrothermal - peroxydisulfate (PDS) dewatering coupled pyrolysis process was proposed. The obtained sludge-derived biochar (HSC) could be as candidate to activate PDS to degrade DCF. Results indicated that exceed 90% of DCF was eliminated within 30 min in HSC-PDS/DCF ternary system under the optimized condition (0.6 mmol/L PDS and 0.5 mg/L HSC, without temperature and pH pre-adjusting). The inner mechanism of HSC-PDS/DCF system was revealed as follows: (1) Major: CO in quinones and ketone structure in HSC accelerated the degradation of DCF via non-radical pathway (electron transfer and ¹O₂). (2) Minor: Graphitic N structure accelerated the electron transfer and O₂•⁻ originated from defective sites involved into the redox. Several by-products were identified and two tentative degradation pathways of DCF (eg. dechlorination and C–N cleavage) were proposed.
Показать больше [+] Меньше [-]Potentially toxic elements have adverse effects on moss communities in the manganese mines of Southern China Полный текст
2022
Sheng, Xu | Zhaohui, Zhang | Zhihui, Wang
This study investigated the distribution of moss species, physiological parameters (superoxide dismutase, peroxide, catalase, and total chlorophyll), and concentrations of potentially toxic elements (Mn, Cr, Zn, Cu, Pb, and Cd) in moss communities and topsoil at the Huayuan manganese mine, Xiangjiang manganese mine, and Nancha manganese mine (Southern China). Partial least squares path modeling (PLS-PM) was then performed to determine the relationship between the indicators. Cd, Mn, and Zn were the main topsoil pollutants, followed by Pb, Cr, and Cu. A total of 73 moss species, comprising 31 genera from 17 families, and 8 community functional groups were identified. The most dominant families were Pottiaceae (30.14%) and Bryaceae (21.92%). PLS-PM revealed that increasing topsoil Mn, Cr, Zn, Cu, Pb, and Cd significantly reduced species diversity and functional diversity. These potentially toxic elements in the topsoil impeded vegetation growth by deteriorating soil conditions and subsequently altering the microenvironment of the moss communities. The community-weighted means demonstrated that functional traits of turfs and warty leaves were the adaptation of the moss communities to an increasingly dry and exposed microenvironment. Moss species with curly and narrow leaves were used to reduce contact with particulate pollutants. PLS-PM also indicated that Mn, Cr, Pb, and Cd may have a detrimental effect on superoxide dismutase, peroxide, catalase, and total chlorophyll, although further validation studies are needed.
Показать больше [+] Меньше [-]