Уточнить поиск
Результаты 1151-1160 из 7,214
Acute and developmental toxic effects of mono-halogenated and halomethyl naphthalenes on zebrafish (Danio rerio) embryos: Cardiac malformation after 2-bromomethyl naphthalene exposure
2022
Park, Jungeun | Kim, Yurim | Jeon, Hwang-Ju | Kim, Kyeongnam | Kim, Chaeeun | Lee, Seungki | Son, Jino | Lee, Sung-Eun
Polyhalogenated polycyclic aromatic hydrocarbons (HPAHs) represent a major environmental concern due to their persistency and toxicity. Among them, mono-halogenated (HNs) and halomethyl naphthalenes (HMNs) are not well-studied, and the toxicity of many HNs to fishes has not been reported. In this study, we exposed zebrafish (Danio rerio) embryos to naphthalene and five HNs at concentrations ranging from 0.25 to 2.0 mg L⁻¹ to assess acute toxicities and developmental effects. Among them, 2-bromomethyl naphthalene (2-BMN) produced moderate lethal effects (96-h LC₅₀ = 1.4 mg L⁻¹) and significantly reduced hatchability. Abnormal phenotypes, including pericardial edema, spine curvature, and shortened body length, were also induced by 2-BMN (96-h EC₅₀ = 0.45 mg L⁻¹). Treatments of 0.5–2.0 mg L⁻¹ 2-BMN evoked cardiac malformations via significant down-regulation of the cacna1c gene, which codes the voltage-dependent calcium channel, at 72 hpf and up-regulation of the nppa gene, responsible for the expression of natriuretic peptides, at 96 hpf in zebrafish. One presumable toxic photo-dissociated metabolite of 2-BMN, the 2-naphthylmethyl radical, may be responsible for the toxic effect on zebrafish embryos. HPAHs must be monitored and managed due to their adverse effects on living organisms at low concentrations.
Показать больше [+] Меньше [-]The variations of antibiotics and antibiotic resistance genes in two subtropical large river basins of south China: Anthropogenic impacts and environmental risks
2022
Gao, Fang-Zhou | He, Liang-Ying | Hu, Li-Xin | Chen, Jun | Yang, Yuan-Yuan | He, Lu-Xi | Bai, Hong | Liu, You-Sheng | Zhao, Jian-Liang | Ying, Guang-Guo
Emission of antibiotics into riverine environments affects aquatic ecosystem functions and leads to the development of antibiotic resistance. Here, the profiles of forty-four antibiotics and eighteen antibiotic resistance genes (ARGs) were analyzed in two large rivers of the Pearl River System. In addition, the risks of ecotoxicity and resistance selection posed by the antibiotics were estimated. As compared to the reservoirs, the river sections close to the urban and livestock areas contained more antibiotics and ARGs. Seasonal variations of antibiotics (higher in the dry season) and relative ARGs (normalized by 16S rRNA gene, higher in the wet season) were found in the water, but not in the sediment. Sulfonamide resistance genes were the most prevalent ARGs in both river water and sediment. Antibiotic concentration was correlated with ARG abundance in the water, indicating that antibiotics play a critical role in ARG spread. In addition, oxytetracycline was the most abundant antibiotic with concentrations up to 2030 ng/L in the water and 2100 ng/g in the sediment respectively, and posed the highest risks for resistance selection. Oxytetracycline, tetracycline and sulfamethoxazole were expected to be more ecotoxicologically harmful to aquatic organisms, while ofloxacin, enrofloxacin, norfloxacin, chlortetracycline, oxytetracycline and tetracycline posed ecotoxicological risks in the sediment. The Nanliujiang river with intensive livestock activities was contaminated by antibiotics and ARGs and faced high ecotoxicological and resistance selection risks. Collectively, these findings reflect the impacts of anthropogenic activities on the spread of antibiotic resistance in large river basins.
Показать больше [+] Меньше [-]Night melatonin levels affect cognition in diurnal animals: Molecular insights from a corvid exposed to an illuminated night environment
2022
Buniyaadi, Amaan | Prabhat, Abhilash | Bhardwaj, Sanjay Kumar | Kumar, Vinod
This study investigated the role of nocturnal melatonin secretion in the cognitive performance of diurnal animals. An initial experiment measured the cognitive performance in Indian house crows treated for 11 days with 12 h light at 1.426 W/m² (∼150 lux) coupled with 12 h of 0.058 W/m² (∼6-lux) dim light at night (dLAN) or with absolute darkness (0 lux dark night, LD). dLAN treatment significantly decreased midnight melatonin levels and negatively impacted cognitive performance. Subsequently, the role of exogenous melatonin (50 μg; administered intraperitoneally half an hour before the night began) was assessed on the regulation of cognitive performance in two separate experimental cohorts of crows kept under dLAN; LD controls received vehicle. Exogenous melatonin restored its mid-night levels under dLAN at par with those under LD controls, and improved the cognitive performance, as measured in the innovative problem-solving, and spatial and pattern learning-memory efficiency tests in dLAN-treated crows. There were concurrent molecular changes in the cognition-associated brain areas, namely the hippocampus, nidopallium caudolaterale and midbrain. In particular, the expression levels of genes involved in neurogenesis and synaptic plasticity (bdnf, dcx, egr1, creb), and dopamine synthesis and signalling (th, drd1, drd2, darpp32, taar1) were restored to LD control levels in crows treated with illuminated nights and received melatonin. These results demonstrate that the maintenance of nocturnal melatonin levels is crucial for an optimal higher-order brain function in diurnal animals in the face of an environmental threat, such as light pollution.
Показать больше [+] Меньше [-]Effects of no-tillage on greenhouse gas emissions in maize fields in a semi-humid temperate climate region
2022
Li, Zhaoxin | Zhang, Qiuying | Li, Zhao | Qiao, Yunfeng | Du, Kun | Tian, Chao | Zhu, Nong | Leng, Peifang | Yue, Zewei | Cheng, Hefa | Chen, Gang | Li, Fadong
Agricultural tillage practices have a significant impact on the generation and consumption of greenhouse gases (GHGs), the primary causes of global warming. Two tillage systems, conventional tillage (CT) and no-tillage (NT), were compared to evaluate their effects on GHG emissions in this study. Averaged from 2018 to 2020, significant decreases of CO₂ and N₂O emissions by 7.4% and 51.1% were observed in NT as compared to those of CT. NT was also found to inhibit the soil CH₄ uptake. In this study, soil was a source of CO₂ and N₂O but a sink for CH₄. The effect of soil temperature on the fluxes of CO₂ was more pronounced than that of soil moisture. However, soil temperature and soil moisture had a weak correlation with CH₄ and N₂O flux variations. As compared to CT, NT did not affect maize yields but significantly reduced global warming potential (GWP) by 8.07%. For yield-scaled GWP, no significant difference was observed in NT (9.63) and CT (10.71). Taken together, NT was an environment-friendly tillage practice to mitigate GHG emissions in the soil under the tested conditions.
Показать больше [+] Меньше [-]Effect of body size, feeding ecology and maternal transfer on mercury accumulation of vulnerable silky shark Carcharhinus falciformis in the eastern tropical pacific
2022
Li, Zezheng | Pethybridge, Heidi R. | Gong, Yi | Wu, Feng | Dai, Xiaojie | Li, Yunkai
The silky shark Carcharhinus falciformis is a large pelagic species distributed in the global oceans and was recently listed as “Vulnerable” by the IUCN because of its decline in population due to overfishing. As an apex predator, the silky shark can accumulate elevated quantities of mercury (Hg), posing a potential risk to its remaining population. In this study, total Hg (THg) concentrations were determined in silky shark muscle, liver, dermis, red blood cells (RBC) and plasma sampled from the eastern tropical Pacific, and δ¹⁵N values were measured to explore the influence of feeding ecology on Hg accumulation. The highest THg concentrations were in muscle (7.81 ± 6.70 μg g⁻¹ dry weight (dw) or 2.14 ± 1.83 μg g⁻¹ wet weight (ww)) and liver (7.88 ± 10.22 μg g⁻¹ dw or 4.66 ± 6.04 μg g⁻¹ ww) rather than dermis, RBC and plasma. The THg concentrations in all tissue types were significantly correlated with fork length and showed faster accumulation rates after maturity. Maternal THg transfer was observed in silky sharks with embryos having 33.16% and 1.98% in muscle and liver compared with their respective mothers. The potentially harmful THg concentrations in silky shark tissues and embryos may lead to health problems of sharks and consumers. THg concentrations were negatively correlated with δ¹⁵N values for all tissues, indicating likely baseline variations in δ¹⁵N values that reflect changes in the foraging habitats or regions of silky sharks with size or age. Lastly, strong correlations were observed among THg concentrations of all tissue types, indicating that nonlethal sampling of muscle and dermis tissue can be used effectively to quantify THg concentration of other internal tissues.
Показать больше [+] Меньше [-]Sediment nitrogen mineralization and immobilization affected by non-native Sonneratia apetala plantation in an intertidal wetland of South China
2022
Yang, Xiaolong | Hu, Chengye | Wang, Bin | Lin, Hao | Xu, Yongping | Guo, Hao | Liu, Guize | Ye, Jinqing | Gao, Dengzhou
The mineralization and immobilization of nitrogen (N) are critical biogeochemical transformations in estuarine and coastal sediments. However, the biotic and abiotic mechanisms that regulate the two processes in different aged mangrove sediments remain poorly understood. Here, we used ¹⁵N isotope dilution method to investigate the changes in sediment N mineralization (GNM) and NH₄⁺ immobilization (GAI) of different aged mangrove habitats (including 0, 10, and 20 years Sonneratia apetala, as well as >40 years mature native Kandelia obovata) in Qi'ao Island, Guangdong Province, China. Measured GNM and GAI rates ranged from 2.69 to 17.53 μg N g⁻¹ d⁻¹ and 2.29–21.38 μg N g⁻¹ d⁻¹, respectively, which varied both spatially and seasonally. The ratio of GNM to total N (PAM%, 0.24–0.86%) also varied spatially and seasonally, but the ratio of GAI to GNM (RAI, 0.79–1.54) only varied spatially. Mangrove restoration significantly increased the N mineralization and immobilization rates, but remained lower than those of mature native Kandelia obovata habitat. The sediment bacterial abundance, labile organic matter and temperature are the dominant factors in controlling N mineralization and immobilization. Our findings suggested that exotic mangrove Sonneratia aperale plantation can enhance sediment N mineralization and immobilization rates and improve N stability through accumulated biomass rapidly. Overall, these results provide new insights into sediment N transformation processes and associated influencing mechanisms in such intertidal wetlands profoundly influenced by human activities.
Показать больше [+] Меньше [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates
2022
Panico, Speranza C. | van Gestel, Cornelis A.M. | Verweij, Rudo A. | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos A. | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pelosi, Céline
Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg⁻¹, respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broad-spectrum fungicides mostly from the azole family. A risk quotient (RQᵢ) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic “cocktail effects”.
Показать больше [+] Меньше [-]The removal of arsenic from solution through biochar-enhanced precipitation of calcium-arsenic derivatives
2022
Zama, Eric F. | Li, Gang | Tang, Yu-Ting | Reid, Brian J. | Ngwabie, Ngwa M. | Sun, Guo-Xin
Arsenic (As) pollution remains a major threat to the quality of global soils and drinking water. The health effects of As pollution are often severe and have been largely reported across Asia and South America. This study investigated the possibility of using unmodified biochar derived from rice husk (RB) and aspen wood (WB) at 400 °C and 700 °C to enhance the precipitation of calcium/arsenic compounds for the removal of As(III) from solution. The approach was based on utilizing calcium to precipitate arsenic in solution and adding unmodified biochar to enhance the process. Using this approach, As(III) concentration in aqueous solution decreased by 58.1% when biochar was added, compared to 25.4% in the absence of biochar. Varying the pH from acidic to alkaline enabled an investigation into the pH dependent dynamics of the approach. Results indicated that significant precipitation was only possible at near neutral pH (i.e. pH = 6.5) where calcium arsenites (i.e. Ca(AsO₂)₂, and CaAsO₂OH•½H₂O) and arsenates (i.e. Ca₅(AsO₄)₃OH) were precipitated and deposited as aggregates in the pores of biochars. Arsenite was only slightly precipitated under acidic conditions (pH = 4.5) while no arsenite was precipitated under alkaline conditions (pH = 9.5). Arsenite desorption from wood biochar was lowest at pH 6.5 indicating that wood biochar was able to retain a large quantity of the precipitates formed at pH 6.5 compared to pH 4.5 and pH 9.5. Given that the removal of As(III) from solution is often challenging and that biochar modification invites additional cost, the study demonstrated that low cost unmodified biochar can be effective in enhancing the removal of As(III) from the environment through Ca–As precipitation.
Показать больше [+] Меньше [-]Geochemical records of Lake Erhai (South-Western China) reveal the anthropogenically-induced intensification of hypolimnetic anoxia in monomictic lakes
2022
Zhang, Yongdong | Fu, Huan | Liao, Hanliang | Chen, Huihui | Liu, Zhengwen
In monomictic lakes, hypolimnetic anoxia is becoming severe in extent and duration over the past few decades. Understanding historical trends in hypolimnetic dissolved oxygen (DO) levels and the factors controlling them is crucial for effective protection and management of monomictic lakes everywhere, but the issue remains little studied in China. Here, our study elucidated the variation of hypolimnion DO and organic matter (OM) input in Lake Erhai (a typical monomictic lake in South-Western China) during the past 200 years, by using the geochemical profiles of elements (C, N, P, S, Mo, Ca, and Al) and aliphatic hydrocarbons in a dated sediment core. The values of element proxies (S concentrations, S/Al ratios, Mo enrichment factor, and total organic carbon/total P ratios) and pristane/phytane (Pr/Ph) ratios reflect relatively limited development of anoxia in the lake hypolimnion before 1990. Meanwhile, the n-alkane proxies (short-chain, middle-chain, and long-chain n-alkane abundances, n-C₁₇/n-C₁₆ alkane ratios, and Paq) indicate relatively scant inputs of OM from phytoplankton and relatively high inputs of OM from terrestrial plants or from submerged macrophytes. Taken together the results show that OM supplied in this period did not deteriorate hypolimnion DO in Lake Erhai. The element proxies and Pr/Ph ratios point to that the lake had experienced a pronounced intensification of hypolimnetic anoxia after 1990, and the n-alkane proxies indicate that the lake was susceptible to severe eutrophication and phytoplankton blooms in this period. The synchronous sharp variation implies the decay of massive phytoplankton OM had severely consumed oxygen in the lake hypolimnion. The large surface area/depth ratio in Lake Erhai is conducive for an overturn of the water column during wind disturbance, which allowed the water column stratification and relating effects (e.g., hypolimnetic anoxia) less vulnerable to some aspects of climate change.
Показать больше [+] Меньше [-]Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures
2022
Solé, M. | Figueres, E. | Mañanós, E. | Rojo-Solís, C. | García-Párraga, D.
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
Показать больше [+] Меньше [-]