Уточнить поиск
Результаты 1171-1180 из 7,292
Nitrogen isotopic composition of NOx from residential biomass burning and coal combustion in North China Полный текст
2022
Zong, Zheng | Shi, Xiaolan | Sun, Zeyu | Tian, Chongguo | Li, Jun | Fang, Yunting | Gao, Huiwang | Zhang, Gan
Stable nitrogen isotope (δ¹⁵N) technology has often been used as a powerful tool to separate nitrogen oxides (NOₓ) produced by residential combustion (i.e., biomass burning and coal combustion) from other sources. However, the insufficient measurement of δ¹⁵N-NOₓ fingerprints of these emissions limits its application, especially in North China where residential emissions are significant. This study conducted combustion experiments to determine the δ¹⁵N-NOₓ of typical residential fuels in North China, including ten biomass fuels and five types of coal. The results showed that the δ¹⁵N of biomass varied between −6.9‰ and 2.3‰, which was lower than the δ¹⁵N of residential coal (−0.2‰–4.6‰). After combustion, the δ¹⁵N of biomass residues increased greatly, while that of coal residues showed no significant upward trend (p > 0.05). The δ¹⁵N-NOₓ produced by biomass burning ranged from −5.6‰ to 3.2‰ (−0.4‰ ± 2.4‰), showing a significant linear relation with δ¹⁵N-biomass. Comparatively, the δ¹⁵N-NOₓ derived from residential coal combustion was much higher (16.1‰ ± 3.3‰), ranging from 11.7‰ to 19.7‰. It was not well correlated with δ¹⁵N-coal, and only slightly lower than the estimated δ¹⁵N-NOₓ of industrial coal combustion (17.9‰, p > 0.05). These observations indicate that the δ¹⁵N-NOₓ of residential coal combustion is a result of the mixture of thermal- and fuel-released NOₓ. Based on the isotopic characteristics observed in this study, we analyzed the reported δ¹⁵N-NOₓ, and provided more statistically robust δ¹⁵N-NOₓ distributions for biomass burning (1.3‰ ± 4.3‰; n = 101) and coal combustion (17.9‰ ± 3.1‰; n = 26), which could provide guidance for scientific studies aiming to quantify the origin of NOₓ in North China and in other regions.
Показать больше [+] Меньше [-]Using alternative test methods to predict endocrine disruption and reproductive adverse outcomes: do we have enough knowledge? Полный текст
2022
Svingen, Terje | Schwartz, Camilla Lindgren | Rosenmai, Anna Kjerstine | Ramhøj, Louise | Johansson, Hanna Katarina Lilith | Hass, Ulla | Draskau, Monica Kam | Davidsen, Nichlas | Christiansen, Sofie | Ballegaard, Anne-Sofie Ravn | Axelstad, Marta
Endocrine disrupting chemicals (EDCs) are a matter of great concern. They are ubiquitous in the environment, are considered harmful to humans and wildlife, yet remain challenging to identify based on current international test guidelines and regulatory frameworks. For a compound to be identified as an EDC within the EU regulatory system, a plausible link between an endocrine mode-of-action and an adverse effect outcome in an intact organism must be established. This requires in-depth knowledge about molecular pathways regulating normal development and function in animals and humans in order to elucidate causes for disease. Although our knowledge about the role of the endocrine system in animal development and function is substantial, it remains challenging to predict endocrine-related disease outcomes in intact animals based on non-animal test data. A main reason for this is that our knowledge about mechanism-of-action are still lacking for essential causal components, coupled with the sizeable challenge of mimicking the complex multi-organ endocrine system by methodological reductionism. Herein, we highlight this challenge by drawing examples from male reproductive toxicity, which is an area that has been at the forefront of EDC research since its inception. We discuss the importance of increased focus on characterizing mechanism-of-action for EDC-induced adverse health effects. This is so we can design more robust and reliable testing strategies using non-animal test methods for predictive toxicology; both to improve chemical risk assessment in general, but also to allow for considerable reduction and replacement of animal experiments in chemicals testing of the 21st Century.
Показать больше [+] Меньше [-]Exploring multiple pathways and mediation effects of urban environmental factors for suicide prevention Полный текст
2022
Shen, Yu-Sheng | Lung, Shih-Chun Candice | Cui, Shenghui
Public health is threatened by air pollution and high temperature, especially in urban areas and areas impacted by climate change. Well-designed urban forms have co-benefits on promoting human health and mediating atmospheric environment-related threats (e.g., high temperature and air pollution). Previous studies overlooked these mediating effects of urban form on suicide mortality. This study used partial least squares modeling and countywide data in Taiwan to identify the crucial influences and pathways of urban environment, socioeconomic status, and diseases on suicide mortality. The model considered the impact of the characteristics of urban form (i.e., urban development intensity, land mix, and urban sprawl), urban industrial status (i.e., industrial level), urban greening (i.e., green coverage), disease (i.e., important diseases morbidity of human immunodeficiency virus [HIV], cerebrovascular disease [CVD], chronic liver disease and cirrhosis [CLDC], nephritis, nephrotic syndrome and nephrosis [NNSN], malignant tumor [MT]), socioeconomic status (i.e., income level and aging population rate), and the atmospheric environment (i.e., air pollution and high temperature) on suicide mortality. Optimizing land mix and minimizing urban development intensity and urban sprawl have been found to reduce suicide mortality. The mediating effect of urban form on suicide mortality originated from air pollution and high temperature, and mediating air pollution was greater than high temperature. Furthermore, industrial level, important diseases (HIV, CVD, CLDC, NNSN, and MT) morbidity, an aging population rate, air pollution, and high temperature were associated with an increase in suicide mortality, whereas green coverage and income level were associated with a reduction in suicide rates. The findings demonstrate that appropriate urban policy and urban planning may lower suicide mortality, be useful strategies for suicide prevention, and be a foundation for building a healthy city. Moreover, this study provides clarity on the complex relationship of suicide and the urban environment while identifying crucial factors.
Показать больше [+] Меньше [-]3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster Полный текст
2022
Wang, Yahong | Jiang, Zhihao | Zhang, Lu | Zhang, Ziyan | Liao, Yanyan | Cai, Peng
With the rapidly increasing popularity of 5G mobile technology, the effect of radiofrequency radiation on human health has caused public concern. This study explores the effects of a simulated 3.5 GHz radiofrequency electromagnetic radiation (RF-EMF) environment on the development and microbiome of flies under intensities of 0.1 W/m², 1 W/m² and 10 W/m². We found that the pupation percentages in the first 3 days and eclosion rate in the first 2 days were increased under exposure to RF-EMF, and the mean development time was shortened. In a study on third-instar larvae, the expression levels of the heat shock protein genes hsp22, hsp26 and hsp70 and humoral immune system genes AttC, TotC and TotA were all significantly increased. In the oxidative stress system, DuoX gene expression was decreased, sod2 and cat gene expression levels were increased, and SOD and CAT enzyme activity also showed a significant increase. According to the 16S rDNA results, the diversity and species abundance of the microbial community decreased significantly, and according to the functional prediction analysis, the genera Acetobacter and Lactobacillus were significantly increased. In conclusion, 3.5 GHz RF-EMF may enhance thermal stress, oxidative stress and humoral immunity, cause changes in the microbial community, and regulate the insulin/TOR and ecdysteroid signalling pathways to promote fly development.
Показать больше [+] Меньше [-]Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China Полный текст
2022
Liu, Mingxuan | Hou, Renjie | Fu, Qiang | Li, Tianxiao | Zhang, Shoujie | Su, Anshuang
The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high–latitude cold regions, this study simulated freeze–thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze–thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze–thaw cycles caused the total amount of PTEs to have a U–shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28–56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.
Показать больше [+] Меньше [-]Organophosphate tri-esters and di-esters in drinking water and surface water from the Pearl River Delta, South China: Implications for human exposure Полный текст
2022
Liang, Chan | Mo, Xiao-Jing | Xie, Jiong-Feng | Wei, Gao-Ling | Liu, Liang-Ying
Some organophosphate di-esters (di-OPEs) have been found to be more toxic than their respective tri-esters. The environmental occurrence of di-OPEs remains largely unclear. A total of 106 water samples, including 56 drinking water (bottled, barreled, and tap water) and 50 surface water (lake and river) samples were collected and analyzed for 10 organophosphate tri-esters (tri-OPEs) and 7 di-OPEs. The concentrations (range (median)) of ∑₇di-OPE were 2.8–22 (9.7), 1.1–5.8 (2.6), 3.7–250 (120), 13–410 (220), and 92–930 (210) ng/L in bottled water, barreled water, tap water, lake water, and river water, respectively. In all types of water samples, tris(1-chloro-2-propyl) phosphate was the dominant tri-OPE compound. Diphenyl phosphate was the predominant di-OPE compound in tap water and surface water, while di-n-butyl phosphate and bis(2-ethylhexyl) phosphate was the dominant compound in bottled water and barreled water, respectively. Source analysis suggested diverse sources of di-OPEs, including industrial applications, effluents of municipal wastewater treatment plants, degradation from tri-OPEs during production/usage and under natural environmental conditions. The non-carcinogenic and carcinogenic risks of OPEs were lower than the theoretical threshold of risk, indicating the human health risks to OPEs via drinking water consumption were negligible. More studies are needed to explore environmental behaviors of di-OPEs in the aquatic environment and to investigate ecological risks.
Показать больше [+] Меньше [-]Enhanced immobilization of cadmium and lead adsorbed on crop straw biochars by simulated aging processes Полный текст
2022
Yang, Kai | Wang, Xilong | Cheng, Hefa | Tao, Shu
Aging is an important natural process affecting the physiochemical properties of biochar, while mechanistic understanding of its effect on the adsorbed heavy metals is still lacking. After adsorption of Cd²⁺ and Pb²⁺, biochars produced from wheat straw (WS) and maize straw (MS) at 300 and 500 °C (denoted as WS300, WS500, MS300, and MS500, respectively) were subjected to 60 cycles of wet–dry or freeze–thaw aging. The results showed that simulated aging treatment transformed the Cd²⁺ and Pb²⁺ adsorbed on the low-temperature biochars from the readily and potentially bioavailable fractions into the non-bioavailable one, while the fractionation of Cd²⁺ and Pb²⁺ adsorbed on WS500 and Pb²⁺ on MS500 barely changed. Spectroscopic characterization revealed that simulated aging enhanced the complexation of Cd²⁺ and precipitation of Pb²⁺ on the biochars. These findings suggest that heavy metals could be effectively immobilized on low-temperature biochars amended to contaminated soils in the long term.
Показать больше [+] Меньше [-]Correlation of bacterial community with phosphorus fraction drives discovery of Actinobacteria involved soil phosphorus transformation during the trichlorfon degradation Полный текст
2022
Wang, Peiying | Li, Qiqiang | Ge, Fei | Li, Feng | Liu, Yun | Deng, Songqiang | Zhang, Dayi | Tian, Jiang
Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200 mg/kg, and analyzed residual TCF contents and metabolites by gas chromatography mass spectrometry after 216-h incubation. Our results suggested that TCF was gradually degraded in soils and was be initially hydrolyzed to dichlorvos via P–C bond cleavage and then other P-containing metabolites. By analyzing different P fractions and soil microbial community composition, we found significant increases of soil available phosphorus contents from 2.76 mg/kg (control) to 3.23 mg/kg (TCF-50), 5.12 mg/kg (TCF-100) and 5.72 mg/kg (TCF-200), respectively. Inorganic CaCl₂–P was easily and instantly transformed to primary mineral inorganic P (Pᵢ) forms of HCl–P and citrate-P, while the proportion of enzyme-P (a labile organic P) fluctuated throughout TCF degradation process. Soil available P contents and Pᵢ fractions were significantly correlated with the relative abundance of Actinobacteria. These results highlighted that Actinobacteria is the dominant soil species utilizing TCF as P sources to increase its community richness, and subsequently affect the transformation of P fractions to regulate soil P cycle. Our study gives new understanding on the microorganisms can involve soil P transformation during organophosphorus pesticides degradation in soils, highlighting the importance of bacteria in P transformation and pesticides soil decontamination.
Показать больше [+] Меньше [-]Performance comparison of silicone and low-density polyethylene as passive samplers in a global monitoring network for aquatic organic contaminants Полный текст
2022
Sobotka, Jaromír | Smedes, Foppe | Vrana, Branislav
Contamination with hydrophobic organic compounds (HOCs) such as persistent organic pollutants negatively affects global water quality. Accurate and globally comparable monitoring data are required to understand better the HOCs distribution and environmental fate. We present the first results of a proof-of-concept global monitoring campaign, the Aquatic Global Passive Sampling initiative (AQUA-GAPS), performed between 2016 and 2020, for assessing trends of freely dissolved HOC concentrations in global surface waters. One of the pilot campaign aims was to compare performance characteristics of silicone (SSP) and low-density polyethylene (PE) sheets co-deployed in parallel under identical conditions, i.e. at the same site, using the same deployment design, and for an equal period. Individual exposures lasted between 36 and 400 days, and samples were collected from 22 freshwater and 40 marine locations. The sampler inter-comparability is based on a rationale of common underlying principles, i.e. HOC diffusion through a water boundary layer (WBL) and absorption by the polymer. In the integrative uptake phase, equal surface-specific uptake in both samplers was observed for HOCs with a molecular volume less than 300 ų. For those HOCs, transport in the WBL controls the uptake as mass transfer in the polymer is over 20-times faster. In such a case, sampled HOC mass can be converted into aqueous concentrations using available models derived for WBL-controlled sampling using performance reference compounds. In contrast, for larger molecules, surface-specific uptake to PE was lower than to SSP. Diffusion in PE is slower than in SSP, and it is likely that for large molecules, diffusion in PE limits the transport from water to the sampler, complicating the interpretation. Although both samplers provided mostly well comparable results, we recommend, based on simpler practical handling, simpler data interpretation, and better availability of reliable polymer-water partition coefficients, silicone-based samplers for future operation in the worldwide monitoring programme.
Показать больше [+] Меньше [-]Arsenic and cadmium induced macronutrient deficiencies trigger contrasting gene expression changes in rice Полный текст
2022
Raghuvanshi, Rishiraj | Raut, Vaibhavi V. | Pandey, Manish | Jeyakumar, Subbiah | Verulkar, Satish | Suprasanna, Penna | Srivastava, Ashish Kumar
Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH₄⁺ as As-associated key macronutrient; while, NH₄⁺/NO₃⁻ and K⁺ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)<IR-64(As)<PB-1(Cd)<IR-64(Cd). A feed-forward model is proposed to explain nutrient deficiency induced de-regulation of gene expression, as observed under Cd-treated IR-64 plants, which was also validated at the level of sulphur metabolism related enzymes. Using urea supplementation, as nitrogen-fertilizer, significant mitigation was observed under As stress, as indicated by 1.018- and 0.794-fold increase in shoot biomass in IR-64 and PB-1, respectively compared to that of control. However, no significant amelioration was observed in response to supplementation of urea under Cd or potassium under As/Cd stress conditions. Thus, the study pinpointed the relative significance of various macronutrients in regulating As- and Cd-tolerance and will help in designing suitable strategies for mitigating As and/or Cd stress conditions.
Показать больше [+] Меньше [-]