Уточнить поиск
Результаты 1191-1200 из 1,956
Impact of Chemical Oxidants on the Heavy Metals and the Microbial Population in Sediments Полный текст
2013
Doğan, Eylem | Accoe, Frederik | Boon, Nico | Bastiaens, Leen | Dejonghe, Winnie
In this study, chemical oxidation was applied to treat three contaminated sediments. All the sediments were contaminated with mineral oil, polycyclic aromatic hydrocarbons and heavy metals and had an organic matter content ranging from 2.4 to 7.6 %. The natural oxidant demand of the sediments was determined during treatment with two different types of oxidants (potassium permanganate and sodium persulfate), and the effect of these oxidants on the heavy metal release and on the microbial community was investigated. The natural oxidant demands of the sediments under persulfate treatment were lower (30–100 g kg⁻¹) than the ones treated with permanganate (50–450 g kg⁻¹). Cr was released during the application of permanganate whereas Zn and Pb were released under persulfate treatment. qPCR results showed that permanganate and persulfate, both at a concentration of 150 g kg⁻¹, caused a decrease (2 log units) in the number of 16S rRNA gene of total bacteria in the sediment having the lowest organic matter content. However, the total ATP, considered as a biomarker for microbial activity, was below detection limit in all sediments in the presence of at least 150 g kg⁻¹ oxidant. Only permanganate induced a shift in the structure of the microbial community.
Показать больше [+] Меньше [-]Tolerance of Four Tropical Tree Species to Heavy Petroleum Contamination Полный текст
2013
Pérez-Hernández, I. | Ochoa-Gaona, S. | Adams Schroeder, R. H. | Rivera-Cruz, M. C. | Geissen, V.
Four species of trees were selected to evaluate the tolerance to heavy crude oil contamination by means of a tolerance index integrating germination, height, biomass and survival as variables. Fresh seeds to Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany) and Tabebuia rosea (macuilis) were planted in a Vertisol to which heavy crude petroleum was added at four different treatments (C0, 0; C1, 18,940; C2, 44,000; and C3, 57,000 mg kg⁻¹), with the control being uncontaminated soil. The experiment was carried out in a greenhouse during 203 days with a completely random design. The presence of petroleum in soil stimulated and increased germination of S. macrophylla and C. odorata, accelerated the germination of T. rosea and did not affect the germination of H. campechianum. The height and biomass of all species was reduced in the presence of petroleum in the soil. The survival of S. macrophylla and H. campechianum was not affected by petroleum at any concentration studied. On the other hand, C. odorata and T. rosea showed high mortality at all concentrations. The tolerance index showed that S. macrophylla was best at tolerating petroleum in soil and could be employed as a productive alternative for the advantageous use of contaminated sites. The use of tree species could be important because of the great potential of trees for phytoremediation due to their long life, biomass and deep roots that can penetrate and remediate deeper soil layers.
Показать больше [+] Меньше [-]Characterization and Selection of Packing Materials for Biofiltration of Rendering Odourous Emissions Полный текст
2013
Anet, Benoît | Couriol, Catherine | Lendormi, Thomas | Amrane, Abdeltif | Le Cloirec, Pierre | Cogny, Gilles | Fillières, Romain
Robust and cheap, biofiltration is one of the most used methods for the biological treatment of industrial gaseous odours and VOCs emissions. The chemical, physical and microbial properties, as well as the economical impact of 11 organic and inorganic packing materials potentially suitable for biofiltration, have been investigated in order to select the most relevant for the treatment of rendering gaseous emissions. Fibrous materials such as peat and coconut fibres are predisposed to compaction. Moreover, according to their low expected running period, their implementation remains expensive, such as activated carbon which induce overweening costs (>100,000€ an -1 for the treatment of 40,000 m3 h-1 with a 60-s empty bed gas residence time). Considering economical aspects, physico-chemical and biological properties, pines barks, composted wood mulch and expanded schist seem fit for this application. The performance of these materials was therefore investigated in a pilot-scale study conducted on a rendering site. According to its appropriate pH (8.62) and water-holding capacity (1.41 g g-1) and its highest nutrients content and colonization at the biofilter start-up (93 g of ATP m-3, 29.10 13 CFU m-3), composted would mulch show the best odour removal efficiency during the 134 days of operation. Performances ranged between 75 and 93 % for the treatment of odourous inlet load between 1.16 and 10.10·106 ouE m-3 h-1 with an empty bed gas residence time of 47 s. However, the pressure drop of the compost bed decreased, suggesting structural changes which may impact the performances in the long term. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Horticultural Use of Copper-Based Fungicides Has Not Increased Copper Concentrations in Sediments in the Mid- and Upper Yarra Valley Полный текст
2013
Wightwick, Adam M. | Croatto, George | Reichman, Suzanne M. | Menzies, Neal W. | Pettigrove, Vincent | Allinson, Graeme
The use of Cu-based fungicide can pose a risk to nearby surface water bodies due to the run-off of accumulated Cu from agricultural soils. In 2008, we conducted a reconnaissance survey of the presence and concentration of copper in sediments at 18 sites within the Yarra River Catchment, an important horticultural production system in south-eastern Australia. Observed Cu concentrations in sediment samples from the study sites (mean (95 % confidence interval) 12.0 (10.6-13.6) mg/kg dry weight) were similar to the concentrations present in the samples from the reference sites (mean (95 % confidence interval) 12.0 (6.7-16.8) mg/kg dry weight). The data on Cu and other metals in the sediments suggest that that there is unlikely to have been wide spread, diffuse, off-site transport of Cu from the soils of horticultural properties to nearby surface waterways in the Yarra River Catchment and that that observed sediment metal concentrations are unlikely to pose an ecological risk to sediment-dwelling organisms at the study sites. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Not All Phosphate Fertilizers Immobilize Lead in Soils Полный текст
2013
Xie, Zheng Miao | Chen, Jianjun | Naidu, R.
The effects of six phosphate (P) fertilizers in mobilizing and immobilizing water-soluble lead (Pb) were determined in a contaminated soil (Alfisol from Shaoxing) from China and four Australian soils (an Oxisol from Twonsville Queensland and three South Australian soils from Cooke Plains (Typic Palexeralf)), Inman Valley (Vertisol), and Two Wells (Natric Palexeralf). The fertilizers tested were single superphosphate (SSP), triple superphosphate (TSP), monoammonium phosphate (MAP), diammonium phosphate (DAP), monocalcium phosphate (MCP), and dicalcium phosphate (DCP) to produce an initial P concentration of 1,000 mg/L. The Chinese soil contained 16,397 mg/kg total Pb, but the Australian soils were uncontaminated. The four Australian soils were each spiked with 1,000 mg Pb/kg soil (as Pb(NO3)2) and incubated for a month. Single superphosphate treatments decreased total soluble Pb in soil solution to 2-14 % of those of the nil-P (0P) treatment in the four Pb-spiked soils and to 48 % in the Chinese Pb-contaminated soil. The DAP treatment followed by the MAP treatment greatly increased the total soluble Pb in soil solution up to 135-500 % of the 0P treatment, except in the Two Wells soil. MCP could decrease the total soluble Pb in Cooke Plains, Inman Valley, Shaoxing, and Two Wells soils while increase it in the Queensland soil; DCP decreased the total soluble Pb in Cooke Plains and Queensland soils while increased it in the Shaoxing and Inman Valley soils. There were close relationships between the total soluble Pb, total soluble Al, and total soluble Fe in the water extracts of each. Soluble Al and Fe ions in soil solution increased soluble Pb concentrations. We conclude that not all phosphate fertilizers immobilize Pb in soils equally well. SSP and TSP are excellent Pb-immobilizing fertilizers, while MAP and DAP are strong Pb-mobilizing fertilizers. MCP and DCP are either Pb-immobilizing fertilizers or Pb-mobilizing fertilizers depending on their reactions with individual soils. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Relationships Between Manure Particle and E. coli Transport from Direct Fecal Deposits Under Steady-State Flows Полный текст
2013
McDaniel, Rachel L. | Soupir, Michelle L.
Pathogens are the leading cause of water quality impairments as defined by the US Environmental Protection Agency and their transport within water bodies is poorly understood. Because of this, watershed-scale, water quality models often have poor bacterial prediction capabilities. To improve the understanding of in-stream bacterial transport, a cow pie was deposited in a recirculating flume with flows ranging from 0.0102 to 0.0176 m³ s⁻¹. Water samples were collected and analyzed for Escherichia coli concentration, E. coli attached fraction, and turbidity. E. coli concentrations ranged from 4.72 × 10³ to 1.70 × 10⁵ CFU 100 mL⁻¹ and turbidity ranged from 1.93 to 369 NTU over both locations and all times. The percentage of E. coli attached to particles ranged from an average of 2.9 to 31 % downstream of the fecal deposition point. Spearman correlation analysis demonstrated that bacteria concentrations were significantly related with water depth (ρ = 0.128, p = 0.018), and the concentration of attached bacteria was significantly correlated with both the total concentration of E. coli (ρ = 0.4081, p = 0.009) and turbidity (ρ = 0.3627, p = 0.0214). This analysis is useful to indicate parameters that should be considered when monitoring or predicting bacteria transport in streams.
Показать больше [+] Меньше [-]Biogeochemical Fractions of Mercury in Soil Profiles of Two Different Floodplain Ecosystems in Germany Полный текст
2013
Frohne, Tina | Rinklebe, Jörg
A special sequential extraction (SE) procedure for mercury (Hg) was conducted to determine biogeochemical fractions of Hg and their controlling factors in four contaminated soil profiles located in two distinct floodplain ecosystems which differ in their industrial histories and thus in their Hg loads. The first study area is located at the Wupper River (Western Germany) and the soil profiles reveal sum of Hg (Hgₛᵤₘ) concentrations up to 48 ppm. The second study area is located at the Saale River (Eastern Germany) and the soil profiles have Hgₛᵤₘ concentrations up to 4.3 ppm. The majority of Hg was found in fraction IV (FIV, Hg⁰) for both study areas, indicating its anthropogenic origin. Moreover, we have detected Hg in fraction V (FV) and in fraction III (FIII). As Hg in FV is mostly associated with Hg sulfides being formed under reducing conditions, it indicates reduction processes which usually occurred during flooding. Mercury in FIII (organo-chelated Hg) exhibits a moderate mobility and a high methylation potential. Between Hg in FIII and hot-water-extractable carbon (CHWE) as a measure of easy degradable, labile soil organic matter, we found a significant correlation. Sum of Hg seem to have a high affinity to organic carbon (Cₒᵣg). The concentrations of Hg in the mobile and exchangeable fractions FI and FII were low. Moreover, the significant positive correlation between iron (Fe) and Hg in FIV indicate an interaction between Hg and Fe. The majority of the Hg in our soils is considered to be relatively immobile. However, since the formation of more mobile Hg species via oxidation or methylation might occur in floodplain soils, the low Hg concentrations in mobile fractions should not be underestimated due to their high mobility and potential plant availability.
Показать больше [+] Меньше [-]The Genotoxic Effect of ZnO and CuO Nanoparticles on Early Growth of Buckwheat, Fagopyrum Esculentum Полный текст
2013
Lee, Sooyeon | Chung, Hyein | Kim, Saeyeon | Lee, Insook
Many airborne and soil-borne nanoparticles (NPs) can enter plants, which are the primary producers in the food chain; recently, studies on the genotoxic effects of NPs on plants are emerging. In the present study, the phytotoxic and genotoxic effects of ZnO and CuO NPs on buckwheat (Fagopyrum esculentum) seedlings were estimated. The inhibition of root growth and biomass at the tested concentrations of NP suspensions and dissolved free ion suspensions were compared. Changes in root morphological features and localization of NPs inside the root epidermis cells were observed. Growth of root treated with ZnO NPs (84.9 and 89.6 %) and CuO NPs (75.4 and 80.1 %) at 2,000 and 4,000 mg L -1, respectively, was decreased significantly than control. The root morphological features and NP incorporation into the root epidermal cells at a high dose of NP showed completely different patterns compared to those for the controls. Through random amplified polymorphic DNA assays for comparison of the effect of ZnO and CuO NPs on DNA stability, it was shown as different DNA polymorphisms at 2,000 and 4,000 mg L-1 of ZnO and CuO NPs, compared to those for controls. Our results provide the first clue to the genotoxic effects of ZnO and CuO NPs on early growth of edible plants such as buckwheat. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Effect of Iron (Fe²⁺) Concentration in Soil on Arsenic Uptake in Rice Plant (Oryza sativa L.) when Grown with Arsenate [As(V)] and Dimethylarsinate (DMA) Полный текст
2013
Rahman, M Azizur | Hasegawa, H. | Rahman, M Mamunur | Maki, T. | Lim, Richard P.
Being predominant inorganic arsenicals, methylarsenicals also occur in anaerobic paddy soils. Therefore, this study investigated the influence of Fe concentrations and arsenic speciation [arsenate (As(V)) and dimethylarsinate (DMA)] in paddy soils on arsenic uptake in rice plant. Rice seedlings were grown in soil irrigated with a Murashige and Skoog (MS) growth solution containing As(V) or DMA with or without 1.8 mM Fe in excess to the background concentration of total iron (0.03 mM) in the soil. Arsenic concentration in rice roots increased initially and then decreased gradually when the seedlings were grown with excess Fe and As(V). In contrast, arsenic concentration in the roots increased steadily ( P < 0.01) when the seedlings were grown without excess Fe and As(V). When the form of the arsenic was DMA, total arsenic (tAs) concentration in rice roots increased gradually ( P < 0.01) and was not affected by the addition of excess Fe in the soil. When rice seedlings were grown with As(V), tAs concentration in rice roots and shoots increased steadily ( P < 0.01) for gradual increase of Fe concentrations in soil. However, tAs concentration in roots and shoots was independent of Fe concentrations in soil when the form of arsenic was DMA. The tAs concentrations in rice shoots also increased significantly ( P < 0.01) with increasing exposure time for both As(V) and DMA. Thus, Fe concentrations in soil affect arsenic uptake in rice plant depending on the speciation of arsenic.
Показать больше [+] Меньше [-]Effect of Organic Ligands on Copper(II) Removal from Metal Plating Wastewater by Orange Peel-based Biosorbents Полный текст
2013
Izquierdo, Marta | Marzal, Paula | Lens, P. N. L. (Piet N. L.)
Copper(II) biosorption in the presence of complexing agents (CA) onto orange peel (OP) and chemically modified OP (OPᴴ⁺, OPᴺᵃ⁺, and OP⁽ᴺᵃ⁺⁾⁽ᴴ⁺⁾) was studied. The study of the effect of pH showed that OPᴴ⁺ presented a copper(II) uptake similar to OP in the pH range 1.5–6.0, whereas OPᴺᵃ⁺ and OP⁽ᴺᵃ⁺⁾⁽ᴴ⁺⁾ showed the highest copper(II) uptake in the pH range 4–6. Copper(II) sorption isotherms were obtained with Cu(II)/CA mass ratios of 1:0 and 1:2 at pH 5. The Sips model fitted best the isotherms without CA, whereas the Freundlich and Brunauer-Emmett-Teller (BET) models fitted best the isotherms in the presence of ethylenediaminetetraacetic acid (EDTA) and citrate, respectively. The CA reduced the copper(II) uptake due to the presence of copper(II)-chelated species, though the interference of citrate was less important than that of EDTA. OPᴺᵃ⁺ and OP⁽ᴺᵃ⁺⁾⁽ᴴ⁺⁾ showed a higher copper(II) uptake capacity than OP, also in the presence of CA in solution. Copper(II) sorption mechanisms were studied using energy-dispersive X-ray and Fourier transform infrared spectroscopy and revealed ion exchange as one of the mechanisms. Biosorption reversibility and biosorbent reuse were evaluated in sorption/desorption cycles. Reversibility of copper(II) sorption was obtained (90 % metal recovery), though an important reduction of the metal uptake was observed in the second cycle.
Показать больше [+] Меньше [-]