Уточнить поиск
Результаты 1201-1210 из 5,149
Physiochemical characteristics of aerosol particles collected from the Jokhang Temple indoors and the implication to human exposure Полный текст
2018
Cui, Lulu | Duo, Bu | Zhang, Fei | Li, Chunlin | Fu, Hongbo | Chen, Jianmin
This paper presents a detailed study on the indoor air pollution in the Jokahng Temple at Tibet Plateau, and its implication to human health. The mean concentrations of PM1.0 and PM2.5 were 435.0 ± 309.5 and 483.0 ± 284.9 μg/m3, respectively. The PM2.5 concentration exceeded the National Ambient Air Quality Standard (75 μg/m3) by 6.4 times. The size-segregated aerosols displayed a bimodal distribution. One peak was observed in the fine mode (0.4–2.1 μm) and the other peak appeared in the coarse mode (2.1–9.0 μm). The concentration of the total size-resolved PM was 794.3 ± 84.9 μg/m3. The mass fraction of coarse particles shared by 41.1%, apparently higher than that reported at low altitudes, probably due to incomplete combustion at Tibet Plateau with hypoxic atmospheric environment. The total concentration of polycyclic aromatic hydrocarbons (PAHs) was 331.2 ± 60.3 ng/m3, in which the concentration of benzo(a)pyrene (BaP) was 18.5 ± 4.3 ng/m3, over ten times higher than the maximum permissible risk value of 1 ng/m3 on account of carcinogenic potency of particulate PAHs through inhalation. PAHs exhibited a trimodal distribution, of which two peaks were observed in the fine mode and one peak in the coarse mode. With the aromatic rings increasing, the peak intensity increased in the fine mode. Na, Ca, Al, Mg and K dominated the elemental mass profiles, and metals displayed a bimodal distribution with a dominant peak in the coarse range. The total PAH deposition flux was 123.6 and 53.1 ng/h for adults and children, respectively. Coarse particles contributed most deposition flux in the head region, while fine particles contribute most deposition flux in the alveolar region. The increment lifetime cancer risk (ILCR) of PAHs ranaged at 10−5-10−4, indicating potential cancer risk to human health. The total deposition flux of metals was estimated at 1.4–13.2 ng/h. With the size increasing, deposition flux increased in the head region while decreased in the alveolar region. The highest ILCR of Cr and Ni were 4.9 × 10−5 and 1.5 × 10−6, respectively, exceeding the permissible risk of 10−6. The hazard quotient (HQ) of Fe (10−5-10−4) and Zn (10−6-10−5) were much lower than the safe level of 1.0, and thus they were not considered as a health concern.
Показать больше [+] Меньше [-]Sulfluramid use in Brazilian agriculture: A source of per- and polyfluoroalkyl substances (PFASs) to the environment Полный текст
2018
Nascimento, Rodrigo A. | Nunoo, Deborah B.O. | Bizkarguenaga, Ekhine | Schultes, Lara | Zabaleta, Itsaso | Benskin, Jonathan P. | Spanó, Saulo | Leonel, Juliana
N-Ethyl perfluorooctane sulfonamide (EtFOSA) is a perfluorooctane sulfonate (PFOS) precursor and the active ingredient in sulfluramid, a pesticide which is used extensively in Brazil for management of leaf cutting ants. Here we investigate the occurrence of EtFOSA, PFOS, and other per- and polyfluoroalkyl substances (PFASs) in soil, eucalyptus leaves, water (ground, riverine, and coastal (estuarine/marine)) and coastal sediment from an agricultural region of Bahia State, Brazil. This area contains a larger number of eucalyptus plantations where sulfluramid is suspected to be applied. Soil, leaves, and coastal water (marine/estuarine) contained ∑PFAS concentrations of up to 5400 pg g⁻¹, 979 pg g⁻¹, and 1020 pg L⁻¹, respectively, with PFAS profiles generally dominated by PFOS and perfluorooctane sulfonamide (FOSA). Coastal sediment contained ∑PFAS concentrations of up to 198 pg g⁻¹, with PFOS, FOSA, and perfluorooctanoic acid (PFOA) being the most frequently observed PFASs. These substances are all potential EtFOSA transformation products, pointing to sulfluramid as a possible source. In riverine water, ∑PFAS concentrations of up to 8930 pg L⁻¹ were observed. PFOS and PFOA were detected in all river water samples. Groundwater also exhibited PFAS contamination (5730 pg L⁻¹ ∑PFASs), likely from sulfluramid use. The observation of other PFASs (e.g. perfluorobutanoic acid) in freshwater suggests that other PFAS sources (in addition to sulfluramid) may be important in this region. Overall, these data support the hypothesis that sulfluramid use contributes to the occurrence of PFASs in the Brazilian environment.
Показать больше [+] Меньше [-]Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response Полный текст
2018
Zhang, Zhenyan | Ke, Mingjing | Qu, Qian | Peijnenburg, W.J.G.M. | Lu, Tao | Zhang, Qi | Ye, Yizhi | Xu, Pengfei | Du, Benben | Sun, Liwei | Qian, Haifeng
Copper nanoparticles (nCu) are widely used in industry and in daily life, due to their unique physical, chemical, and biological properties. Few studies have focused on nCu phytotoxicity, especially with regard to toxicity mechanisms in crop plants. The present study examined the effect of 15.6 μM nCu exposure on the root morphology, physiology, and gene transcription levels of wheat (Triticum aestivum L.), a major crop cultivated worldwide. The results obtained were compared with the effects of exposing wheat to an equivalent molar concentration of ionic Cu (Cu²⁺ released from CuSO₄) and to control plants. The relative growth rate of roots decreased to approximately 60% and the formation of lateral roots was stimulated under nCu exposure, possibly due to the enhancement of nitrogen uptake and accumulation of auxin in lateral roots. The expression of four of the genes involved in the positive regulation of cell proliferation and negative regulation of programmed cell death decreased to 50% in the Cu²⁺ treatment compared to that of the control, while only one gene was down-regulated to about half of the control in nCu treatment. This explained the decreased root cell proliferation and higher extent of induced cell death in Cu²⁺- than in nCu-exposed plants. The increased methane dicarboxylic aldehyde accumulation (2.17-fold increase compared with the control) and decreased antioxidant enzyme activities (more than 50% decrease compared with the control) observed in the Cu²⁺ treatment in relation to the nCu treatment indicated higher oxidative stress in Cu²⁺- than in nCu-exposed plants. Antioxidant (e.g., proline) synthesis was pronouncedly induced by nCu to scavenge excess reactive oxygen species, alleviating phytotoxicity to wheat exposed to this form of Cu. Overall, oxidative stress and root growth inhibition were the main causes of nCu toxicity.
Показать больше [+] Меньше [-]Tracing natural and industrial contamination and lead isotopic compositions in an Australian native bee species Полный текст
2018
Zhou, Xiaoteng | Taylor, Mark Patrick | Davies, Peter J.
This study investigates trace element concentrations (arsenic (As), manganese (Mn), lead (Pb) and zinc (Zn)) and Pb isotopic compositions in an Australian native bee species, Tetragonula carbonaria, and its products of honey and wax. Co-located soil and dust samples were simultaneously analysed with the objective of determining if the bees or their products had potential application as a proxy for monitoring environmental contamination. The most significant relationships were found between Pb concentrations in honey (r = 0.814, p = 0.014) and wax (r = 0.883, p = 0.004) and those in co-located dust samples. In addition, Zn concentrations in honey and soil were significantly associated (r = 0.709, p = 0.049). Lead isotopic compositions of native bee products collected from background sites adjacent to Sydney national parks (²⁰⁶Pb/²⁰⁷Pb = 1.144, ²⁰⁸Pb/²⁰⁷Pb = 2.437) corresponded to local geogenic rock and soil values (²⁰⁶Pb/²⁰⁷Pb = 1.123–1.176, ²⁰⁸Pb/²⁰⁷Pb = 2.413–2.500). By contrast, inner Sydney metropolitan samples, including native bees and wax (²⁰⁶Pb/²⁰⁷Pb = 1.072–1.121, ²⁰⁸Pb/²⁰⁷Pb = 2.348–2.409), co-located soil and dust (²⁰⁶Pb/²⁰⁷Pb = 1.090–1.122, ²⁰⁸Pb/²⁰⁷Pb = 2.368–2.403), corresponded most closely to aerosols collected during the period of leaded petrol use (²⁰⁶Pb/²⁰⁷Pb = 1.067–1.148, ²⁰⁸Pb/²⁰⁷Pb = 2.341–2.410). A large range of Pb isotopic compositions in beehive samples suggests that other legacy sources, such as Pb-based paints and industrials, may have also contributed to Pb contamination in beehive samples. Native bee data were compared to corresponding samples from the more common European honey bee (Apis mellifera). Although Pb isotopic compositions were similar in both species, significant differences in trace element concentrations were evident across the trace element suite, the bees and their products. The statistical association between T. carbonaria and co-located environmental contaminant concentrations were stronger than those in European honey bees, which may be attributable to its smaller foraging distance (0.3–0.7 km versus 5–9 km, respectively). This implies that T. carbonaria may be more suitable for assessing small spatial scale variations of trace element concentrations than European honey bees.
Показать больше [+] Меньше [-]How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood Полный текст
2018
Aristodemou, Elsa | Boganegra, Luz Maria | Mottet, Laetitia | Pavlidis, Dimitrios | Constantinou, Achilleas | Pain, Christopher | Robins, Alan | ApSimon, H. M. (Helen M.)
The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings (“skyscrapers”) with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of “dead-zones” and high-concentration “hotspots” in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria.
Показать больше [+] Меньше [-]Human health risk assessment for nanoparticle-contaminated aquifer systems Полный текст
2018
Tosco, Tiziana | Sethi, Rajandrea
Nanosized particles (NPs), such as TiO₂, Silver, graphene NPs, nanoscale zero-valent iron, carbon nanotubes, etc., are increasingly used in industrial processes, and releases at production plants and from landfills are likely scenarios for the next years. As a consequence, appropriate procedures and tools to quantify the risks for human health associated to these releases are needed.The tiered approach of the standard ASTM procedure (ASTM-E2081-00) is today the most applied for human health risk assessment at sites contaminated by chemical substances, but it cannot be directly applied to nanoparticles: NP transport along migration pathways follows mechanisms significantly different from those of chemicals; moreover, also toxicity indicators (namely, reference dose and slope factor) are NP-specific. In this work a risk assessment approach modified for NPs is proposed, with a specific application at Tier 2 to migration in groundwater. The standard ASTM equations are modified to include NP-specific transport mechanisms. NPs in natural environments are typically characterized by a heterogeneous set of NPs having different size, shape, coating, etc. (all properties having a significant impact on both mobility and toxicity). To take into account this heterogeneity, the proposed approach divides the NP population into classes, each having specific transport and toxicity properties, and simulates them as independent species. The approach is finally applied to a test case simulating the release of heterogeneous Silver NPs from a landfill. The results show that taking into account the size-dependent mobility of the particles provides a more accurate result compared to the direct application of the standard ASTM procedure. In particular, the latter tends to underestimate the overall toxic risk associated to the nP release.
Показать больше [+] Меньше [-]Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions Полный текст
2018
Yu, Shujun | Liu, Yang | Ai, Yuejie | Wang, Xiangxue | Zhang, Rui | Chen, Zhongshan | Chen, Zhe | Zhao, Guixia | Wang, Xiangke
Heavy metal pollution of water sources has raised global environmental sustainability concerns, calling for the development of high-performance materials for effective pollution treatment. Herein, we report a facile approach to synthesize carbonaceous nanofiber/NiAl layered double hydroxide (CNF/LDH) nanocomposites for high-efficiency elimination of heavy metals from aqueous solutions. The CNF/LDH nanocomposites were characterized by three-dimensional architectures formed by the gradual self-assembly of flower-like LDH on CNF. The nanocomposites exhibited excellent hydrophilicity and high structural stability in aqueous solutions, guaranteeing the high availability of active sites in these environments. High-efficiency elimination of heavy metal ions by the CNF/LDH nanocomposites was demonstrated by the high uptake capacities of Cu(II) (219.6 mg/g) and Cr(VI) (341.2 mg/g). The sorption isotherms coincided with the Freundlich model, most likely because of the presence of heterogeneous binding sites. The dominant interaction mechanisms consisted of surface complexation and electrostatic interaction, as verified by a combination of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses and density functional theory calculations. The results presented herein confirm the importance of CNF/LDH nanocomposites as emerging and promising materials for the efficient removal of heavy metal ions and other environmental pollutants.
Показать больше [+] Меньше [-]Chronic nitrate exposure alters reproductive physiology in fathead minnows Полный текст
2018
Kellock, Kristen A. | Moore, Adrian P. | Bringolf, Robert B.
Nitrate is a ubiquitous aquatic pollutant that is commonly associated with eutrophication and dead zones in estuaries around the world. At high concentrations nitrate is toxic to aquatic life but at environmental concentrations it has also been purported as an endocrine disruptor in fish. To investigate the potential for nitrate to cause endocrine disruption in fish, we conducted a lifecycle study with fathead minnows (Pimephales promelas) exposed to nitrate (0, 11.3, and 56.5 mg/L (total nitrate-nitrogen (NO3-N)) from <24 h post hatch to sexual maturity (209 days). Body mass, condition factor, gonadal somatic index (GSI), incidence of intersex, and vitellogenin induction were determined in mature male and female fish and plasma 11-keto testosterone (11-KT) was measured in males only. In nitrate-exposed males both 11-KT and vitellogenin were significantly induced when compared with controls. No significant differences occurred for body mass, condition factor, or GSI among males and intersex was not observed in any of the nitrate treatments. Nitrate-exposed females also had significant increases in vitellogenin compared to controls but no significant differences for mass, condition factor, or GSI were observed in nitrate exposed groups. Estradiol was used as a positive control for vitellogenin induction. Our findings suggest that environmentally relevant nitrate levels may disrupt steroid hormone synthesis and/or metabolism in male and female fish and may have implications for fish reproduction, watershed management, and regulation of nutrient pollution.
Показать больше [+] Меньше [-]Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models Полный текст
2018
Shi, Guoliang | Liu, Jiayuan | Wang, Haiting | Tian, Yingze | Wen, Jie | Shi, Xurong | Feng, Yinchang | Ivey, Cesunica E. | Russell, Armistead G.
PM₂.₅ is one of the most studied atmospheric pollutants due to its adverse impacts on human health and welfare and the environment. An improved model (the chemical mass balance gas constraint-Iteration: CMBGC-Iteration) is proposed and applied to identify source categories and estimate source contributions of PM₂.₅. The CMBGC-Iteration model uses the ratio of gases to PM as constraints and considers the uncertainties of source profiles and receptor datasets, which is crucial information for source apportionment. To apply this model, samples of PM₂.₅ were collected at Tianjin, a megacity in northern China. The ambient PM₂.₅ dataset, source information, and gas-to-particle ratios (such as SO₂/PM₂.₅, CO/PM₂.₅, and NOx/PM₂.₅ ratios) were introduced into the CMBGC-Iteration to identify the potential sources and their contributions. Six source categories were identified by this model and the order based on their contributions to PM₂.₅ was as follows: secondary sources (30%), crustal dust (25%), vehicle exhaust (16%), coal combustion (13%), SOC (7.6%), and cement dust (0.40%). In addition, the same dataset was also calculated by other receptor models (CMB, CMB-Iteration, CMB-GC, PMF, WALSPMF, and NCAPCA), and the results obtained were compared. Ensemble-average source impacts were calculated based on the seven source apportionment results: contributions of secondary sources (28%), crustal dust (20%), coal combustion (18%), vehicle exhaust (17%), SOC (11%), and cement dust (1.3%). The similar results of CMBGC-Iteration and ensemble method indicated that CMBGC-Iteration can produce relatively appropriate results.
Показать больше [+] Меньше [-]Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis Полный текст
2018
Sun, Zhiying | Chen, Chen | Xu, Dandan | Li, Tiantian
Previous studies have suggested that ambient temperature is associated with the mortality and morbidity of myocardial infarction (MI) although consistency among these investigations is lacking. We performed a meta-analysis to investigate the relationship between ambient temperature and MI. The PubMed, Web of Science, and China National Knowledge Infrastructure databases were searched back to August 31, 2017. The pooled estimates for different temperature exposures were calculated using a random-effects model. The Cochran's Q test and coefficient of inconsistency (I2) were used to evaluate heterogeneity, and the Egger's test was used to assess publication bias. The exposure-response relationship of temperature-MI mortality or hospitalization was modeled using random-effects meta-regression. A total of 30 papers were included in the review, and 23 studies were included in the meta-analysis. The pooled estimates for the relationship between temperature and the relative risk of MI hospitalization was 1.016 (95% confidence interval [CI]: 1.004–1.028) for a 1 °C increase and 1.014 (95% CI: 1.004–1.024) for a 1 °C decrease. The pooled estimate of MI mortality was 1.639 (95% CI: 1.087–2.470) for a heat wave. The heterogeneity was significant for heat exposure, cold exposure, and heat wave exposure. The Egger's test revealed potential publication bias for cold exposure and heat exposure, whereas there was no publication bias for heat wave exposure. An increase in latitude was associated with a decreased risk of MI hospitalization due to cold exposure. The association of heat exposure and heat wave were immediate, and the association of cold exposure were delayed. Consequently, cold exposure, heat exposure, and exposure to heat waves were associated with an increased risk of MI. Further research studies are required to understand the relationship between temperature and MI in different climate areas and extreme weather conditions.
Показать больше [+] Меньше [-]