Уточнить поиск
Результаты 1261-1270 из 1,955
Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices Полный текст
2013
Liang, X. Q. | Chen, Y. X. | Nie, Z. Y. | Ye, Y. S. | Liu, J. | Tian, G. M. | Wang, G. H. | Tuong, T. P.
Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices Полный текст
2013
Liang, X. Q. | Chen, Y. X. | Nie, Z. Y. | Ye, Y. S. | Liu, J. | Tian, G. M. | Wang, G. H. | Tuong, T. P.
Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4 ~ 27.5 % and surface runoff was reduced by 30.2 ~ 36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3 ~ 30.4 % and 26.9 ~ 31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4 ~ 47.6 % and 46.1 ~ 48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.
Показать больше [+] Меньше [-]Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices Полный текст
2013
Liang, X.Q. | Chen, Y.X. | Nie, Z.Y. | Ye, Y.S. | Liu, J. | Tian, G.M. | Wang, G.H. | Tuong, T.P.
Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption Полный текст
2013
Kaushik, Prachi | Malik, Anushree
Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7–94.3 %) and cationic (35.4–90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater.
Показать больше [+] Меньше [-]An eco-friendly method for short term preservation of skins/hides using Semecarpus anacardium nut extract Полный текст
2013
Iyappan, Kuttalam | Ponrasu, Thangavel | Sangeethapriya, Vilvanathan | Gayathri, Vinaya Subramani | Suguna, Lonchin
Preservation or curing of hides and skins is performed as the primary step of leather processing. Common salt is employed as the conventional agent for curing purpose. Use of salt enhances the pollution load of tannery effluent which becomes highly contaminated with increased total dissolved solids and chlorides. To overcome this hurdle, researchers are in constant search of alternative preservation techniques which are either totally void of salt or use only a meager amount of salt. In the present study, we had explored the possibility of using Semecarpus anacardium nut extract as an alternative to salt for the curing process by assessing different parameters like hair slip, putrefaction odor, volatile nitrogen content, moisture content, bacterial count, and shrinkage temperature in comparison to the salt curing method. The antibacterial property of the plant extract was also investigated. The results obtained substantiated that the nut extract of S. anacardium effectively could preserve the skins for more than a month, by its antibacterial activity along with the dehydrating property of acetone.
Показать больше [+] Меньше [-]Removal of Cr(VI) onto Ficus carica biosorbent from water Полный текст
2013
Gupta, V. K. | Pathania, Deepak | Agarwal, Shilpi | Sharma, Shikha
The utilization of sustainable and biodegradable lignocellulosic fiber to detoxify the noxious Cr(VI) from wastewater is considered a versatile approach to clean up a contaminated aquatic environment. The aim of the present research is to assess the proficiency and mechanism of biosorption on Ficus carica bast fiber via isotherm models (Langmuir, Freundlich, Temkin, Harkin’s–Jura, and Dubinin–Radushkevich), kinetic models, and thermodynamic parameters. The biomass extracted from fig plant was characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and contact time were studied by batch method. The equilibrium data were best represented by the Langmuir isotherm model, and the maximum adsorption capacity of Cr(VI) onto biosorbent was found to be 19.68 mg/g. The pseudo-second-order kinetic model adequately described the kinetic data. The calculated values of thermodynamic parameters such as enthalpy change (∆H ⁰), entropy change (∆S ⁰), and free energy change (∆G ⁰) were 21.55 kJ/mol, 76.24 J/mol K, and −1.55 kJ/mol, respectively, at 30 °C which accounted for spontaneous and endothermic processes. The study of adsorbent capacity for Cr(VI) removal in the presence of Na⁺, Mg²⁺, Ca²⁺, SO ₄ ²⁻ , HCO ₃ ⁻ and Cl⁻ illustrated that the removal of Cr(VI) increased in the presence of HCO³⁻ ions; the presence of Na⁺, SO ₄ ²⁻ or Cl⁻ showed no significant influence on Cr(VI) adsorption, while Ca²⁺ and Mg²⁺ ions led to an insignificant decrease in Cr(VI) adsorption. Further, the desorption studies illustrated that 31.10 % of metal ions can be removed from an aqueous system, out of which 26.63 % of metal ions can be recovered by desorption in first cycle and the adsorbent can be reused. The results of the scale-up study show that the ecofriendly detoxification of Cr(VI) from aqueous systems was technologically feasible.
Показать больше [+] Меньше [-]Experimental exposure of juvenile savannah monitors (Varanus exanthematicus) to an environmentally relevant mixture of three contaminants: effects and accumulation in tissues Полный текст
2013
Ciliberti, Alexandre | Martin, Samuel | Ferrandez, Eric | Belluco, Sara | Rannou, Benoit | Dussart, Céline | Berny, Philippe | Buffrénil, Vivian de
Using varanids as indicators of pollution in African continental wetlands was previously proposed. The present study aimed at understanding experimentally how monitors absorb and accumulate pollutants and how they are affected. The relevance of non-destructive sampling was also evaluated. Savannah monitors (Varanus exanthematicus) were orally exposed during 6 months to a mixture of lead, 4,4′-dichlorodiphenyltrichloroethane (4,4′-DDT) and chlorpyrifos-ethyl (CPF) or to the vehicle only. Proportionally to their mass, exposed monitors received the same dose: 20 then 10 mg lead kg⁻¹, 2 then 0.5 mg CPF kg⁻¹ and 4 mg 4,4′-DDT kg⁻¹. Individuals surviving contamination were euthanized after 4 or 6 months of experiment. Tissues were analysed for lead by atomic absorption spectrophotometry and for DDT and CPF by gas chromatography. Exposed monitors absorbed all three pollutants but only lead (essentially in bone, tail tips and phalanxes) and 4,4′-DDT plus its main metabolites (essentially in fat and liver) accumulated. CPF killed ten individuals. Clear correlations occurred between the total quantity of lead or 4,4′-DDT administered and concentrations in tissues. Tail tips and skin samples are recommended non-destructive indicators for lead and organochlorine pesticides contamination, respectively. This work confirms that monitors can be used as relevant indicators of environmental pollution by lead and organochlorine pesticides. Although varanids withstand heavy lead and DDT contamination, our results suggest that CPF can be lethal at very low doses to the herpetofauna and emphasize the importance of considering all taxa in impact assessment studies, including reptiles.
Показать больше [+] Меньше [-]Effects of As levels on radial oxygen loss and As speciation in rice Полный текст
2013
Wu, Chuan | Li, Hui | Ye, Zhihong | Wu, Fuyong | Wong, Ming Hung
Greenhouse experiment was conducted to examine effects of arsenic (As) on iron plaque formation, radial oxygen loss, As accumulation, and speciation in rice. Three genotypes were grown in soil with three different concentrations of As. The stress of As caused a slight increase of iron plaque formation (P > 0.05) and a decrease in the rates of radial oxygen loss (ROL; P < 0.01). The results of As speciation showed that the percentages of DMA increased from 19-28 % to 53-58 %, while the percentages of inorganic As decreased from 53-58 % to 36-42 % with the increasing soil As concentrations, indicating a strong environmental influence on As species in rice grain. The present study showed that elevated soil As may induce As toxicity towards rice plants, leading to the decrease of ROL; environmental factors could influence As methylation or As species transportation. Our study provided useful information on As tolerance and accumulation in rice which may contribute to reducing the health risk posed by As contamination in rice.
Показать больше [+] Меньше [-]Particulate copper in soils and surface runoff from contaminated sandy soils under citrus production Полный текст
2013
Bakshi, Santanu | He, Zhenli L. | Harris, Willie G.
Soil contamination by copper (Cu) is a worldwide concern. Laboratory incubation and soil Cu characterization were conducted to examine the effects of external Cu loading and liming on Cu speciation in both bulk soil and particulates of an Alfisol and Spodosol under citrus production. Also, drainage water from the sites was evaluated for dissolved and particulate forms of Cu. Soil available Cu estimated by CaCl₂, NH₄OAc, or Mehlich-3 extraction significantly increased with external Cu loads and decreased with soil pH. Most increases in soil Cu occurred in the exchangeable and oxide-bound fractions. Organically bound Cu was the dominant fraction in both bulk soil and particulates, but more in particulates than bulk soil (P ≤ 0.001). Organically bound Cu was highly correlated with total recoverable Cu (P ≤ 0.01), increased significantly with external Cu loads (P ≤ 0.001), and decreased with soil pH (P ≤ 0.05). Lime addition converted part of Cu from available pools to more stable forms. Organically bound Cu complexes were found to dominate in soil solution or surface runoff. These results indicate that most Cu accumulated in the contaminated soils is highly mobile, and thus may impact citrus production and the environment.
Показать больше [+] Меньше [-]Sorption and desorption studies of a reactive azo dye on effective disposal of redundant material Полный текст
2013
Çelekli, Abuzer | Bozkurt, Hüseyin
The effective disposal of redundant elephant dung (ED) is important for environmental protection and utilization of resource. The aim of this study was to remove a toxic-azo dye, Reactive Red (RR) 120, using this relatively cheap material as a new adsorbent. The FTIR-ATR spectra of ED powders before and after the sorption of RR 120 and zero point charge (pHzpc) of ED were determined. The sorption capacity of ED for removing of RR 120 were carried out as functions of particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. Sorption isotherm, kinetic, activation energy, thermodynamic, and desorption parameters of RR 120 on ED were studied. The sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. FTIR-ATR spectroscopy indicated that amine and amide groups have significant role on the sorption of RR 120 on ED. The pHzpc of ED was found to be 7.3. Sorption kinetic of RR 120 on ED was well described by sigmoidal Logistic model. The Langmuir isotherm was well fitted to the equilibrium data. The maximum sorption capacity was 95.71 mg g(-1). The sorption of RR 120 on ED was mainly physical and exothermic according to results of D-R isotherm, Arrhenius equation, thermodynamic, and desorption studies. The thermodynamic parameters showed that this process was feasible and spontaneous. This study showed that ED as a low-cost adsorbent had a great potential for the removal of RR 120 as an alternative eco-friendly process.
Показать больше [+] Меньше [-]Degradation of ciprofloxacin by cryptomelane-type manganese(III/IV) oxides Полный текст
2013
Xiao, Xiao | Sun, Sheng-Peng | McBride, Murray B. | Lemley, Ann T.
The objective of this study is to investigate and understand the oxidizing properties of a manganese oxide, specifically synthetic cryptomelane (KMn₈O₁₆) and its derivatives, in aqueous solution. Ciprofloxacin (CIP), a commonly used fluoroquinolone antibiotic, was used as the probe. Synthetic cryptomelane, known as octahedral molecular sieves (OMS-2), was synthesized, and its derivatives were prepared by adding transition metal oxides, V₂O₅ or MoO₃, as dopants during synthesis. The solids were characterized by x-ray powder diffraction (XRD), SEM–energy-dispersive spectrometry (SEM-EDX), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), Raman spectra, and N₂-Brunauer-Emmett-Teller method. Degradation of CIP by different doped OMS-2 was carried out. Process conditions were optimized using response surface methodology (RSM). XRD patterns indicated the crystal phase of regular and doped OMS-2 as the cryptomelane type. Presence of the dopants in doped cryptomelane was confirmed by SEM-EDX and XPS. FTIR and Raman results suggested that the dopants were substituted into the framework in place of manganese. SEM images, XRD analysis, and surface area analysis of doped OMS-2 indicated decreased particle size, decreased crystallinity, and increased surface area compared to regular OMS-2. Higher oxidizing reactivity of doped OMS-2 was also observed with increased CIP removal rates from aqueous solution. The enhancement of reactivity may be due to the increase of surface areas. Nine percent Mo/OMS-2, the most effective oxidant of all synthesized derivatives, was selected for optimization study. Favorable treatment conditions were obtained using RSM at pH 3 with molar ratio [9 % Mo/OMS-2]/[CIP] ≥ 50. Under such conditions, more than 90 % CIP can be removed in 30 min. The degradation kinetics was modeled by a modified first order rate with introduction of a retardation factor-α (R ² > 0.98). Analysis of degradation products indicated that oxidation takes place mainly on the piperazine ring of CIP.
Показать больше [+] Меньше [-]Signal transduction disturbance related to hepatocarcinogenesis in mouse by prolonged exposure to Nanjing drinking water Полный текст
2013
Zhang, Rui | Sun, Jie | Zhang, Yan | Cheng, Shupei | Zhang, Xiaowei
Toxicogenomic approaches were used to investigate the potential hepatocarcinogenic effects on mice by oral exposure to Nanjing drinking water (NJDW). Changes in the hepatic transcriptome of 3 weeks male mice (Mus musculus) were monitored and dissected after oral exposure to NJDW for 90 days. No preneoplastic and neoplastic lesions were observed in the hepatic tissue by the end of NJDW exposure. However, total of 746 genes were changed transcriptionally. Thirty-one percent of differentially expressed genes (DEGs) were associated with the functional categories of cell cycle regulation, adhesion, growth, apoptosis, and signal transduction, which are closely implicated in tumorigenesis and progression. Interrogation of Kyoto Encyclopedia of Genes and Genomes revealed that 43 DEGs were mapped to several crucial signaling pathways implicated in the pathogenesis of hepatocellular carcinoma (HCC). In signal transduction network constructed via Genes2Networks software, Egfr, Akt1, Atf2, Ctnnb1, Hras, Mapk1, Smad2, and Ccnd1 were hubs. Direct gene-disease relationships obtained from Comparative Toxicogenomics Database and scientific literatures revealed that the hubs have direct mechanism or biomarker relationships with hepatocellular preneoplastic lesions or hepatocarcinogenesis. Therefore, prolonged intake of NJDW without employing any indoor water treatment strategy might predispose mouse to HCC. Furthermore, Egfr, Akt1, Ctnnb1, Hras, Mapk1, Smad2, and Ccnd1 were identified as promising biomarkers of the potential combined hepatocarcinogenicity.
Показать больше [+] Меньше [-]