Уточнить поиск
Результаты 1261-1270 из 2,513
Effects of Perchlorate Stress on Growth and Physiological Characteristics of Rice (Oryza sativa L.) Seedlings Полный текст
2014
Xie, Yinfeng | Tao, Gongsheng | Chen, Qian | Tian, Xueyao
Effects of perchlorate stress on the growth and physiological characteristics of rice (Oryza sativa L.) were studied in controlled water culture experiments. Perchlorate stress resulted in varied patterns of biomass allocation to O. sativa organs (roots, stems, and leaves). When stressed with higher perchlorate concentrations, the proportion of root biomass was higher, stem biomass was invariant, while leaf biomass was lower. Coefficients of variation in biomass of different organs followed the order leaf > stem > root, indicating that leaf growth has a higher sensitivity to perchlorate. Compared to the control, the chlorophyll and protein content of leaves and root vigor were lower, whereas malondialdehyde (MDA) content and catalase (CAT) activity were higher and related to perchlorate concentration and duration of stress. Superoxide dismutase (SOD) activity was initially high and then decreased markedly during the experiment, while peroxidase (POX) activity in perchlorate-treated rice was always higher than the POX activity of the control. POX was the most sensitive antioxidant enzyme to perchlorate stress. Correlation analysis showed a positive correlation between SOD activity and the fresh weight of the whole plant, and negative correlation with MDA content. The results suggest that perchlorate could induce oxidative stress and oxidative damage may be the main cause of physiological damage and growth inhibition in rice plants under perchlorate stress.
Показать больше [+] Меньше [-]Adsorption and Removal of Cadmium Ions from Simulated Wastewater Using Commercial Hydrophilic and Hydrophobic Silica Nanoparticles: a Comparison with Sol–gel Particles Полный текст
2014
Muñoz, Susana Vargas | Martínez, Martha Shaday | Torres, Maykel González | Alcalá, Sadott Pacheco | Quintanilla, Francisco | Rodríguez-Canto, Antonio | Rodríguez, José Rogelio
Adsorption and removal of cadmium ions from simulated industrial wastewater using hydrophilic and hydrophobic commercial silica nanoparticles are reported. These results are compared with those obtained using sol–gel silica nanoparticles. Two types of dense commercial pyrogenic silica nanoparticles with different chemical groups on the surface were used to adsorb cadmium ions: Aerosil A130VS and R972. The pore absence in these particles reduces the surface area and, consequently, the concentration of active chemical groups appropriated for adsorption, as compared with the sol–gel particles that are highly porous; this effect is partially compensated by the small sizes available for these commercial particles. The concentration of cadmium ions was reduced: from 109 to 0.01 ppm for A130VS, from 138 to 1.44 ppm for R972, and from 123 to 0.005 ppm for sol–gel. The flocculation kinetics was obtained using dynamic light scattering and the amount of adsorbed cadmium in the sediment using atomic absorption spectroscopy.
Показать больше [+] Меньше [-]CO2 Production of Soil Microbiota in the Presence of Ametryne and Biofertilizer Полный текст
2014
Régo, A. P. J. | Reganhan-Coneglian, C. M. | Montagnolli, R. N. | Bidoia, E. D.
Ametryne is an herbicide applied to sugar cane cultures to prevent the emergence of weeds. It is a persistent compound that percolates ground and surface water thus impacting aquatic communities. In this study, we evaluated microbial activity in soil with increased concentrations of ametryne solution and commercial Microgeo biofertilizer. The soil subject to analysis was obtained from a sugar cane cultivation area. The concentration used in the experiment was ametryne 12 μg/L and 1 % of biofertilizer. It was used with the Bartha and Pramer respirometric method to quantify CO₂production and determine microbial activity. Complimentary phytotoxicity tests with Lactuca sativa seeds after respirometry experiments were conducted in the soluble fraction of the soil. According to the results, the addition of biofertilizer promoted microbial activity in the presence of ametryne and reduced ametryne phytotoxicity for Lactuca sativa seeds. Thus, Microgeo biofertilizer can potentially improve biodegradation of ametryne through both bioaugmentation and bioestimulation.
Показать больше [+] Меньше [-]Exploring the Potential Effects of Lost or Discarded Soft Plastic Fishing Lures on Fish and the Environment Полный текст
2014
Raison, T. | Nagrodski, A. | Suski, C. D. | Cooke, S. J.
As the popularity and use of soft plastic lures (SPLs) by recreational anglers have increased in recent years, so does the number of anecdotal reports of SPLs being found in aquatic environments and in the digestive tract of a variety of fish species. We used a multistep approach to determine the possible consequences of SPLs on fish and aquatic environments. Field work focussed on lake trout (Salvelinus namaycush) and smallmouth bass (Micropterus dolomeiu) in Charleston Lake in eastern Ontario, a system identified by resource managers and the lake association as potentially having an SPL problem based on numerous anecdotal reports from anglers. Snorkel surveys revealed that the deposition rate of SPLs was potentially as high as ~80 per km of shoreline per year. In the laboratory, eight different types of SPLs were immersed in water at two temperatures (4 and 21 °C) for a 2-year period to evaluate change in SPL size (both swelling and decomposition). Despite SPLs varying by manufacturer and in composition, there was little evidence of decomposition. Indeed, most SPLs swelled and remained that way throughout the study. In cold water, SPLs increased an average of 61 % in weight and 19 % in length, while warm water treatments experienced an increase of 205 % in weight and 39 % in length. A summer creel survey conducted on Charleston Lake revealed that 17.9 % of anglers interviewed reported finding at least one ingested SPL when cleaning lake trout. However, when we sampled lake trout (using gill nets) and smallmouth bass (by rod and reel), we found few ingested SPLs (2.2 and 3.4 %, respectively). Based on the examination of fish that contained SPLs and the near-shore surveys, the most common SPLs were soft stick baits/wacky worms. The most promising approach to address the SPL problem is to educate anglers about the need to rig SPLs in a manner such that they are less likely to be lost during fishing and to always discard SPLs appropriately. Moreover, the tackle industry should continue to investigate SPLs that are less likely to be pulled off by fish and/or that degrade rapidly.
Показать больше [+] Меньше [-]Influence of the Anaerobic Biodegradation of Different Types of Biodiesel on the Natural Attenuation of Benzene Полный текст
2014
Borges, J. M. | Dias, J. M. | Danko, A. S.
In the present research work, different types of biodiesel were produced by a homogeneous alkali transesterification reaction using soybean oil, pork lard, and castor bean oil as raw materials, to evaluate how their different compositions may affect the biodegradability, namely, in the presence of benzene. Biodiesel was characterized according to the European standard EN 14214. The anaerobic biodegradation of the different types of biodiesel was examined as well as its influence on the biodegradation of benzene. Analyses were performed to determine the volume of methane (directly related to the anaerobic biodegradation of biodiesel), the concentration of benzene over time, and the production of organic acids. The results showed methane production resulting from the anaerobic degradation of all biodiesel types. The differences between the degradation behavior of each fuel were negligible, contrary to what was expected; however, the amount of methane produced was low due to nutrient limitations. This fact was confirmed by the organic acid analysis as well as by the addition of new media. Anaerobic benzene biodegradation was found to be negatively impacted by the presence of all biodiesel types on average; therefore, the results of this study may impact management of sites that contain biodiesel and fuel hydrocarbon contamination.
Показать больше [+] Меньше [-]Chemical Dispersion of Crude Oil: Assessment of Physiological, Immune, and Antioxidant Systems in Juvenile Turbot (Scophthalmus maximus) Полный текст
2014
Theron, Michael | Bado-Nilles, Anne | Beuvard, Christian | Danion, Morgane | Dussauze, Mathieu | Ollivier, Hélène | Pichavant-Rafini, Karine | Quentel, Claire | Le Floch, Stéphane
This work focuses on the effects of two commercial formulations of dispersants on juvenile turbot after 48 h of contamination and 15 days of recovery. Oxidative stress, gill, and immune functions were assessed in seven conditions: exposition to the water-soluble fraction of an oil, mechanical dispersion, two dispersants alone, two types of chemical dispersion and a control group. In the contaminated groups, nominal concentrations of oil and dispersants were 66 and 3.3 mg L⁻¹, respectively. Dispersants alone had weak effects; the soluble fraction induced leucopenia and gill alteration. Chemical and mechanical dispersion induced similar effects. After contamination, a principal component analysis showed two distinct areas: the first one included the control and dispersants groups, the second one dispersion of the oil. After the 15-day recovery period, it was not possible to differentiate the groups. This study shows that, in the experimental conditions tested, the dispersion, either chemical or mechanical, enhances the consequences of exposure to crude oil without long-lasting consequences.
Показать больше [+] Меньше [-]Chitosan-Immobilized Pumice for the Removal of As(V) from Waters Полный текст
2014
Turan, Dilek | Kocahakimoğlu, Cemre | Boyacı, Ezel | Sofuoglu, Sait C. | Eroğlu, Ahmet E.
A novel sorbent, chitosan-immobilized pumice, has been prepared for the sorption of As(V) from waters prior to its determination by hydride generation atomic absorption spectrometry. The success of the immobilization has been checked with such characterization techniques as scanning electron microscopy, thermal gravimetric analysis, and elemental analysis. Points of zero charge of the sorbents were determined with potentiometric mass titration. Batch-type equilibration studies have shown that the novel sorbent can be employed at a wide pH range resulting in quantitative sorption (>90 %) at pH 3.0–7.0 and greater than 70 % sorption at pH >8.0. These results demonstrate the advantage of immobilizing chitosan onto pumice, because, under the same conditions, pumice displays <20 % sorption toward As(V), whereas chitosan gives approximately 90 % sorption only at pH 3.0. The validity of the method was verified through the analysis of ultrapure, bottled drinking, and tap water samples spiked with arsenate; the respective sorption percentages of 93.2 (±0.7), 89.0 (±1.0), and 80.9 (±1.3) were obtained by batch-type equilibration. Arsenic sorption was also examined in the presence of common interfering ions resulting in competing effects of PO₄ ³⁻ and NO₃ ⁻ on As(V) adsorption.
Показать больше [+] Меньше [-]Quantifying the Spatial Variability of Airborne Pollutants to Stormwater Runoff in different Land-Use Catchments Полный текст
2014
Murphy, Louise U. | O’Sullivan, Aisling | Cochrane, Thomas A.
An understanding of the effects of land-use activities on atmospherically derived pollutant loadings in stormwater is helpful for determining appropriate treatment strategies for different catchments. Impervious concrete boards (≈1 m²) were deployed for 11 months in different land-use areas (industrial, residential and airside of an airport’s runway) throughout Christchurch, New Zealand, to determine the spatial variability of atmospherically derived pollutants in stormwater runoff. Runoff was analysed for metals (principally Cu, Zn and Pb) and total suspended solids (TSS). All three land-use areas exhibited similar temporal patterns of varying metal and TSS loads, indicating that atmospherically deposited metals and TSS had a homogenous distribution within the Christchurch airshed. However, mean pollutant loadings for all total metals and TSS were significantly higher in the industrial area compared to the residential and airside areas, which had statistically similar mean metal loadings. The signature ratios of specific heavy metals (As, Cr, Mn, Ni, Pb, Sr and Zn) to Cu were relatively homogeneous between the three land-use areas, indicating that the pollutants originate from a similar source and that surrounding land-use was not as an important factor in determining atmospheric pollutant loadings to stormwater runoff as previously thought.
Показать больше [+] Меньше [-]Quantifying Water Retention Time in Non-tidal Coastal Waters Using Statistical and Mass Balance Models Полный текст
2014
Dimberg, Peter H. | Bryhn, Andreas C.
The water retention time (sometimes called residence time) in coastal areas is an indicator of coastal hydrodynamics which can be used to quantify the local transportation of dissolved and suspended pollutants. This study has used dynamic and statistical models to explore what governs the water retention time in non-tidal coastal waters of the Baltic Sea. If freshwater input divided by the cross-section area between the coastal water and the sea was below a certain threshold, freshwater had no notable impact on the retention time. Moreover, statistical models were developed for predicting surface water retention time and total water retention time from coastal water volume, cross-section area and freshwater discharge. This study can be useful for managers who need to determine where abatement measures should be focused in order to be as effective as possibly against coastal water pollution.
Показать больше [+] Меньше [-]Modeling of UV-Induced Photodegradation of Naphthalene in Marine Oily Wastewater by Artificial Neural Networks Полный текст
2014
Jing, Liang | Chen, Bing | Zhang, Baiyu
In this study, an artificial neural networks (ANN) model was developed to predict the removal of a polycyclic aromatic hydrocarbon (PAH), namely, naphthalene from marine oily wastewater by using UV irradiation. The removal rate was used as model output and simulated as a function of five independent input variables, including fluence rate, salinity, temperature, initial concentration and reaction time. The configuration of the ANN model was optimized as a three-layer feed-forward Levenberg–Marquardt backpropagation network with log-sigmoid and linear transfer functions at the hidden (12 hidden neurons) and output layers, respectively. By considering goodness-of-fit and cross validated predictability, the ANN model was trained to provide good overall agreement with experimental results with a slope of 0.97 and a correlation of determination (R ²) of 0.943. Sensitivity analysis revealed that fluence rate and temperature were the most influential variables, followed by reaction time, salinity and initial concentration. The findings of this study showed that neural network modeling could effectively predict the behavior of the photo-induced PAH degradation process.
Показать больше [+] Меньше [-]