Уточнить поиск
Результаты 1341-1350 из 6,548
Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations Полный текст
2020
Gbeddy, Gustav | Goonetilleke, Ashantha | Ayoko, G. A. (Godwin A.) | Egodawatta, Prasanna
Polycyclic aromatic hydrocarbons (PAHs) are prone to post-emission transformation and degradation to yield transformed PAH products (TPPs) that are potentially more hazardous than parent PAHs. This review provides a comprehensive evaluation of the potential environmental processes of PAHs such as sorption, volatilisation, photo- and bio-transformation and degradation on road surfaces, a significant accumulation point of PAHs. The review primarily evaluates key influential factors, toxicity implications, PAHs and TPPs fate and viable options for mitigating environmental and human health impacts. Photolysis was identified as the most significant transformation and degradation process due to the light absorption capacity of most PAHs. Climate conditions, physicochemical properties of road dust (sorbent), PAHs and TPPs and the existence of heavy metals such as Fe (III) are notable underlying factors for photolysis. Available data points to the predominance of carbonyl TPPs than other products such as nitro and hydroxyl TPPs with decreasing concentration trend of 9-fluorenone > 9,10-anthraquinone > benzo[a]fluorenone on road surfaces. The review recommends conducting future investigations targeting the influential factors pertaining to the fate of road deposited PAHs and TPPs. Furthermore, development of cost and time effective modern analytical methods is needed to quantify PAHs and TPPs present in minute quantities of samples. The review also identified that the unavailability of toxicity equivalency factors (TEF) for the most critical TPPs can be addressed using quantitative structure-activity relationship (QSAR) models and bioassays simultaneously. The content of this review is significant to the future work of researchers across various fields including analytical and environmental chemistry, stormwater pollution and toxicology.
Показать больше [+] Меньше [-]Spatial distribution and seasonal variations of atmospheric organophosphate esters (OPEs) in Tianjin, China based on gridded field observations Полный текст
2020
Liang, Yuanyuan | Wang, Huan | Yang, Qiaoyun | Cao, Shengyu | Yan, Caiqing | Zhang, Liwen | Tang, Naijun
The atmospheric concentrations of 14 organophosphate esters (OPEs) were monitored by passive air sampling at 33 sites to determine their spatial distributions, and seasonal variations (summer and winter) in Tianjin, North China. The total concentrations of the OPEs (∑₉OPEs) in the summer ranged from 0.08 to 1113 ng/sample with a median of 98.4 ng/sample, which was non-statistically different from the concentrations obtained in the winter (which ranged from 1.93 to 548 ng/sample with a median of 46.2 ng/sample). Among the observed OPEs, the concentrations of TnBP and TCiPP were statistically higher in the summer compared with the winter (p < 0.05). For grouped OPEs, only a significantly higher level of chlorinated OPEs was found in summer than that in winter. In the winter, spatial differences were found to be significantly different between the concentrations of TnBP, TiBP, TCEP, and TEHP in the suburban and rural areas (p < 0.05). Considering the possible point-sources, in the summer, the concentrations of TDCPP, TCiPP, DPEHP, TEHP, and the total concentration of TCPs (denoted as ∑₃TCP, comprised of the concentrations of TCP, TmCP, and ToCP) in an electronic-waste (e-waste) dismantling area were higher than those obtained at the other sampling sites. ∑₉OPEs at the e-waste site and another site located near a manufacturing plant of organophosphate flame retardants (OFRs) were both higher than the median concentrations obtained at the other sampling sites, and TCiPP was the most abundant pollutant. In the winter, the concentrations of ∑₉OPEs at the e-waste site were still higher than their median concentrations at the other sites. Because OPEs are used in aircraft lubricating oils and hydraulic fluids, an airport was thought to be another important source of TiBP and TPhP in the present study. Therefore, the e-waste site, airport, and OFR manufacturing plant may be the major sources of OPEs in the environment.
Показать больше [+] Меньше [-]Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production Полный текст
2020
Zhen, Huayang | Jia, Li | Huang, Caide | Qiao, Yuhui | Li, Ji | Li, Huafen | Chen, Qing | Wan, Yanan
Heavy metal contamination in protected-field vegetable production has aroused widespread concern and manure is considered to be one of the contamination sources. Little is known about its long-term effects on heavy metal pollution in uncontaminated soils. A 15-year protected-field vegetable production experiment was carried out with three manure treatments (chicken manure: cattle manure = 3:1) with high (HMAR), medium (MMAR) and low (LMAR) application rates to evaluate the long-term risks of heavy metal pollution. It was found that continuous and high manure application rates significantly increased the total concentrations of soil Cd, Zn, Cr, and Cu rather than Pb, Ni or As. The high application rate of manure also increased soil available heavy metals although the soil organic matter was increased as well. Though total soil Cd under the HMAR exceeded the threshold of national soil standard, Cd content in tomato and fennel still complied with the food safety requirements of vegetables. Generally, the accumulation rates of soil Zn, Cu, and Cr with 1 t⋅ha⁻¹ of manure application in three treatments were ranked by HMAR < MMAR < LMAR. Based on the results of the ratio of heavy metal accumulation risk (RAR), Zn, Cu, and Cr under HMAR and Cd and Zn under MMAR would exceed their soil threshold values within 100 years and RAR could be a useful indicator for monitoring the long-term risk of soil heavy metal pollution. Recommended manure application rates to guarantee a 100-year period of clean production were 44, 74, and 63 t⋅ha⁻¹⋅yr⁻¹ for Zn, Cu, and Cr, respectively. Measurements should be taken to minimize the risk of heavy metals (Cd, Zn, Cr, and Cu) pollution sourced from manure to ensure food safety and ‘cleaner’ protected-field vegetable production.
Показать больше [+] Меньше [-]Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar Полный текст
2020
Chen, Haoming | Tang, Lingyi | Wang, Zhijun | Su, Mu | Tian, Da | Zhang, Lin | Li, Zhen
Cadmium cations (Cd²⁺) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd²⁺ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd²⁺ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd²⁺ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd²⁺ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
Показать больше [+] Меньше [-]Application of equilibrium passive sampling to profile pore water and accessible concentrations of hydrophobic organic contaminants in Danube sediments Полный текст
2020
Belháčová-Minaříková, Michaela | Smedes, Foppe | Rusina, Tatsiana P. | Vrana, Branislav
Total concentrations of hydrophobic organic contaminants (HOCs) in sediment present a poor quality assessment parameter for aquatic organism exposure and environmental risk because they do not reflect contaminant bioavailability. The bioavailability issue of HOCs in sediments can be addressed by application of multi-ratio equilibrium passive sampling (EPS). In this study, riverbed sediment samples were collected during the Joint Danube Survey at 9 locations along the Danube River in 2013. Samples were ex-situ equilibrated with silicone passive samplers. Desorption isotherms were constructed, yielding two endpoints: pore water (CW:₀) and accessible (CAS:₀) concentration of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers in sediment. CW:₀ concentrations of DDT and its breakdown products exhibited elevated levels in the low Danube, with the maximum in the river delta. Other investigated HOCs did not show any clear spatial trends along the river, and only a moderate CW:₀ variability. CAS:₀ in sediment ranged from 10 to 90% of the total concentration in sediment. CW:₀ was compared with freely dissolved concentration in the overlaying surface water, measured likewise by passive sampling. The comparison indicated potential compound release from sediment to the water phase for PAHs with less than four aromatic rings, and for remaining HOCs either equilibrium between sediment and water, or potential compound deposition in sediment. Sorption partition coefficients of HOC to organic carbon correlated well with octanol-water partition coefficients (KOW), showing stronger sorption of PAHs to sediment than that of PCBs and OCPs having equal logKOW. Comparison of CW:₀ values with European environmental quality standards indicated potential exceedance for hexachlorobenzene, fluoranthene and benzo[a]pyrene at several sites. The study demonstrates the utility of passive sampling as an innovative approach for risk-oriented monitoring of HOCs in river catchments.
Показать больше [+] Меньше [-]Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1α signaling pathway Полный текст
2020
Yang, Qingyue | Han, Bing | Xue, Jiangdong | Lv, Yueying | Li, Siyu | Liu, Yan | Wu, Pengfei | Wang, Xiaoqiao | Zhang, Zhigang
Occupational exposure to hexavalent chromium (Cr(VI)) can cause cytotoxicity and carcinogenicity. In this study, we established a liver injury model in rats via intraperitoneal injection of potassium dichromate (0, 2, 4, and 6 mg/kg body weight) for 35 d to investigate the mechanism of Cr(VI)-induced liver injury. We found that Cr(VI) induced hepatic histopathological lesions, oxidative stress, and apoptosis and reduced the expression of mitochondrial-related regulatory factors such as adenosine 5′-monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in a dose-dependent manner. Furthermore, Cr(VI) promoted mitochondrial division and inhibited fusion, leading to increased expression of caspase-3 and production of mitochondrial reactive oxygen species. Our study demonstrates that long-term exposure to Cr(VI) induces mitochondrial dynamics disorder by inhibiting AMPK/PGC-1α signaling pathway in rat liver.
Показать больше [+] Меньше [-]World within world: Intestinal bacteria combining physiological parameters to investigate the response of Metaphire guillelmi to tetracycline stress Полный текст
2020
Chao, Huizhen | Sun, Mingming | Ye, Mao | Zheng, Xiaoxuan | Hu, Feng
Due to the abusive usage of antibiotics in animal husbandry, a large amount of residual antibiotics has been released into the environment, therein posing great threat against both environment security and public health. Therefore, it is of great significance to investigate the toxicity of antibiotics on the widely-applied bioindicator-earthworm. In this work, the physiological parameters and the intestinal bacteria community of Metaphire guillelmi were monitored simultaneously to evaluate their sensitivity to the tetracycline (TC) exposure. As expected, the antioxidant enzyme activity and coelomocyte apoptosis acted fairly well as biomarkers for the TC toxicity. In contrast, the intestinal bacteria of Metaphire guillelmi responded varyingly to different TC doses. When TC concentration increased from 0 to 35.7 μg cm⁻², the percentage of the Proteobacteria phylum declined significantly from 85.5% to 34.4%, while the proportions of the Firmicutes, Planctomycetes and Atinomycete phyla clearly increased (p < 0.05). Meanwhile, the levels of TC resistance genes tetA, tetC, and tetW increased with the increasing TC concentration, in contrast to the declined abundance in denitrifying genes nirS and nosZ (p < 0.05). By analyzing the correlation between the antioxidant enzyme activity and the dominant intestinal bacteria in the worm gut, it is interesting to found that the four dominant bacteria genera Mesorhizobium, Aliihoeflea, Romboutsia, and Nitrospira are the promising bioindicator of TC stress due to their sensitive response. This work shed novel light on evaluating the ecotoxicological risks posed by residual TC in environment by using a combination of physiological parameters and intestinal bacterial activity in earthworms.
Показать больше [+] Меньше [-]Improved PM2.5 predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground observations Полный текст
2020
Hong, Jia | Mao, Feiyue | Min, Qilong | Pan, Zengxin | Wang, Wei | Zhang, Tianhao | Gong, Wei
The new-generation geostationary satellites feature higher radiometric, spectral, and spatial resolutions, thereby making richer data available for the improvement of PM₂.₅ predictions. Various aerosol optical depth (AOD) data assimilation methods have been developed, but the accurate representation of the AOD-PM₂.₅ relationship remains challenging. Empirical statistical methods are effective in retrieving ground-level PM₂.₅, but few have been evaluated in terms of whether and to what extent they can help improve PM₂.₅ predictions. Therefore, an empirical and statistics-based scheme was developed for optimizing the estimation of the initial conditions (ICs) of aerosol in WRF-Chem (Weather Research and Forecasting/Chemistry) and for improving the PM₂.₅ predictions by integrating Himawari-8 data and ground observations. The proposed method was evaluated via two one-year experiments that were conducted in parallel over eastern China. The contribution of the satellite data to the model performance was evaluated via a 2-week control experiment. The results demonstrate that the proposed method improved the PM₂.₅ predictions throughout the year and mitigated the underestimation during pollution episodes. Spatially, the performance was highly correlated with the amount of valid data.
Показать больше [+] Меньше [-]Di-(2-ethylhexyl) phthalate limits the pleiotropic effects of statins in chronic kidney disease patients undergoing dialysis and endothelial cells Полный текст
2020
Guo, Bei-Chia | Kuo, Ko-Lin | Chen, Chia-Hui | Chen, Shen-Liang | Tsou, Tsui-Chun | Lee, Tzong-Shyuan
The level of di-(2-ethylhexyl) phthalate (DEHP) is elevated in chronic kidney disease patients undergoing dialysis. However, statins are unable to reduce the cardiovascular events in chronic dialysis patients. In this study, we investigated the effects of DEHP on statin-conferred pleiotropic effects and the underlying molecular mechanism in peritoneal dialysis (PD) patients and endothelial cells (ECs). In PD patients with serum DEHP level ≥0.0687 μg/mL, statin treatment was not associated with lower risk of cardiovascular disease. In ECs, exposure to DEHP abrogated the simvastatin-induced NO bioavailability and EC-related functions. Additionally, DEHP abolished the anti-inflammatory effect of simvastatin on the tumor necrosis factor α-induced upregulation of adhesion molecules and monocyte adhesion to ECs. Mechanistically, DEHP blunted the activation of transient receptor potential vanilloid type 1 (TRPV1), which is required for NO production by simvastatin in ECs. Notably, DEHP increased the activity and expression of protein phosphatase 2B (PP2B), a negative regulator of TRPV1 activity. The effect of DEHP on PP2B activation was mediated by the activation of the NADPH oxidase/reactive oxygen species (NOX−ROS) pathway. Inhibition of PP2B activity by pharmacological antagonists prevented the inhibitory effects of DEHP on simvastatin-induced Ca²⁺ influx, NO bioavailability, and EC migration, proliferation, tube formation, and anti-inflammatory action. Collectively, DEHP activates the NOX−ROS−PP2B pathway, which in turns inhibits TRPV1/Ca²⁺-dependent signaling and abrogates the statin-conferred pleiotropic protection in ECs.
Показать больше [+] Меньше [-]A potential lignocellulosic biomass based on banana waste for critical rare earths recovery from aqueous solutions Полный текст
2020
Lapo, Byron | Bou, Jordi J. | Hoyo, Javier | Carrillo, Manuel | Peña, Karina | Tzanov, Tzanko | Sastre, Ana Maria
Rare earth elements (REE) present multiple applications in technological devices but also drawbacks (scarcity and water contaminant). The current study aims to valorise the banana wastes - banana rachis (BR), banana pseudo-stem (BPS) and banana peel (BP) as sustainable adsorbent materials for the recovery of REE (Nd³⁺, Eu³⁺, Y³⁺, Dy³⁺ and Tb³⁺). The adsorbent materials were characterized using analytical techniques such as: Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and scanning electron microscopy with energy dispersive X-ray probe. The adsorption performance and mechanisms were studied by pH dependence, equilibrium isotherms, kinetics, thermodynamics, ion-exchange and desorption evaluation. The results show good adsorption capacities for the three materials, highlighting BR that presents ∼100 mg/g for most of the REE. The adsorption process (100 mg REE/L) reaches the 60% uptake in 8 min and the equilibrium within 50 min. On the other hand, the thermodynamic study indicates that the adsorption is spontaneous and exothermic (ΔH° < 40 kJ/mol). The adsorption mechanism is based on the presence of carboxylic groups that induce electrostatic interactions and facilitate the surface nucleation of REE microcrystals coupled to an ion exchange process as well as the presence of other oxygen containing groups that establish weak intermolecular forces. The recovery of REE from the adsorbent (∼97%) is achieved using EDTA as desorbing solution. This research indicates that banana waste and particularly BR is a new and promising renewable bioresource to recover REE with high adsorption capacity and moderated processing cost.
Показать больше [+] Меньше [-]