Уточнить поиск
Результаты 1361-1370 из 3,197
Genotoxicity and Anatomical Root Changes in Allium cepa L. (Amaryllidaceae) Caused by the Effluent of the Processing of Ornamental Rocks
2015
Teixeira, Mairy Bitencourt | Fernandes, Ítalo Antônio | de Castro, Evaristo Mauro | Techio, Vânia Helena
The effluent of the ornamental rock industry is characterized by presenting great concentrations of total solids, high contents of iron, and elevated pH, all responsible for the contamination of the superficial and ground waters, destruction of the soil, the vegetation, and the silting of the rivers. The purpose of this study is to assess the cytotoxic and genotoxic effects and the anatomical changes caused by the effluents arising from the ornamental rock polishing industry in root apex cells of Allium cepa L. (Amaryllidaceae). The samples of the effluent were collected in a polishing industry located in Nova Venécia, State of Espírito Santo, and were analyzed by mass spectrometry and atomic emission. Bulbs of A. cepa were exposed to the effluent at 12.5, 25, 37.5, 50, 75, and 100 % concentrations (residue in raw form) (v/v) for a period of 20 days. For the positive control, metilmethanesulfonate (MMS) at 4 × 10⁻⁴-M concentration was used, and distilled water was used for the negative control. The experiment was assessed taking into consideration the following parameters: mitotic index, frequency of chromosomal and nuclear abnormalities in the root apical meristem, and root anatomy. The mitotic index suffered a decrease proportional to the increase in the concentration of effluent. All the concentrations of the effluent led to chromosomal and nuclear abnormalities being stickiness and nuclear shoots the most frequent. The root apex evidenced changes that reflected on the decrease of the percentage area of the protoderm and the fundamental meristem and the increase in the areas of the cap and quiescent center. The symptoms of toxicity are related to the high frequency of cell in cellular death process observed in the roots exposed to the higher concentrations and to the decrease in the mitotic index of the apical root meristem.
Показать больше [+] Меньше [-]Removal of Phosphate from Aqueous Solutions by Chemical- and Thermal-Modified Bentonite Clay
2015
Tanyol, Mehtap | Yonten, Vahap | Demir, Veysel
The study investigated phosphate adsorption from aqueous solutions using chemical- and thermal-modified bentonite in batch system. The adsorbent was characterized by SEM, BET, and FTIR spectroscopy. Contact time, beginning phosphate concentration, pH of the solution, and the effects of the temperature on phosphate adsorption capacity were determined by a series of experimental studies. In a wide pH range (3–10), high phosphate removal yields were obtained (between 94.23 and 92.26 %), and with the increase in temperature (from 25 to 45 °C), phosphate removal increased. Langmuir and Freundlich isotherms were used to determine the sorption equilibrium, and the results demonstrated that equilibrium data displayed better adjustment to Langmuir isotherm than the Freundlich isotherm. Phosphate sorption capacity, calculated using Langmuir equation, is 20.37 mg g⁻¹ at 45 °C temperature and pH 3. Mass transfer and kinetic models were applied to empirical findings to determine the mechanism of adsorption and the potential steps that control the reaction rate. Both external mass transfer and intra-particle diffusion played a significant role on the adsorption mechanism of phosphate, and adsorption kinetics followed the pseudo-second-order-type kinetic. Furthermore, thermodynamic parameters (ΔH°, ΔG°, ΔS°) which reveal that phosphate adsorption occur spontaneously and in endothermic nature were determined. The results of this study support that bentonite, which is found abundant in nature and modified as an inexpensive and effective adsorbent, could be used for phosphate removal from aqueous solutions.
Показать больше [+] Меньше [-]Phytoremediation Ability of Solanum nigrum L. to Cd-Contaminated Soils with High Levels of Cu, Zn, and Pb
2015
Yu, Cailian | Peng, Xianlong | Yan, Hong | Li, Xiaoxia | Zhou, Zhenhua | Yan, Tingliang
Solanum nigrum L., a potential cadmium (Cd) hyper-accumulator, has not currently been investigated to identify if it has a strong simultaneous accumulative ability to Cd, copper (Cu), zinc (Zn), or lead (Pb) in contaminated soils. In this study, a pot culture experiment was conducted to investigate the phytoremediation effects of S. nigrum L. on these heavy metals. The potential hyper-accumulative characteristics of S. nigrum L. were also discussed. The results showed that S. nigrum L. remediation effects were not inhibited by multi-heavy metals in contaminated soil. On the contrary, the height and wet and dry weights of S. nigrum L. increased compared to the control treatments and to treatments using only one heavy metal contaminant. Results from the Cd treatment experiments showed 1.66- and 1.45-fold increases in stem and root levels; there were also 1.24-, 2.17-, and 1.61-fold extraction increases in the leaves, stems, and roots, respectively. The differences found in shoot and root bioaccumulation coefficient (BC) factors for multi-heavy metal (MHM) treatment were higher than for a single Cd treatment. These results indicate that S. nigrum L. could stimulate biomass production and that it has a strong ability to tolerate and accumulate Cd in contaminated soils with Pb, Zn, and Cu. This study shows that the remediation scope for S. nigrum L. is greater than currently believed and that it will also remove Pb, Zn, and Cu while extracting Cd from contaminated soils.
Показать больше [+] Меньше [-]Effects of a Giant Pulp and Paper Mill on the Pollutant Accumulating Capacity of the Soil with Special Reference to its Carbon Sequestering Potential
2015
Adhikari, Gopi | Bhattacharyya, Krishna G.
Inadequately treated effluents from industry have serious environmental and public health concerns. Even low level discharges create problems through accumulation in water and soil. In the present work, the pollutant accumulating capacity and the general environmental health status of soil which is a repository of treated and untreated effluent discharges and solid waste dumping of a giant pulp and paper mill have been evaluated with respect to some selected physicochemical parameters. The pollutant accumulating capacity of the soil in seven well-defined sites in and around the mill was found with reference to a “control” site with no history of receiving effluent discharges or solid wastes. The changes in texture, bulk density, water-holding capacity, electrical conductivity, pH, organic carbon, cation exchange capacity, exchangeable sodium, etc. of the soil up to the normal tilled depth were observed in different seasons. In most sites, the soil organic carbon was poorly correlated to the bulk density, water-holding capacity, pH, and clay and sand contents, indicating an unhealthy state of the soil and, correspondingly, nearly exhausted pollutant accumulating capacity. Considerable differences in pH, electrical conductivity, bulk density, and water-holding capacity were observed between the soil receiving effluent discharge and solid waste dumping and the control soil. The soil had accumulated considerable amounts of the exchangeable cations (Ca, Mg, Na, and K). The work has found that industrial activities have worked against the normal behavior of the soil and reduced its capacity to serve as a natural repository of carbon.
Показать больше [+] Меньше [-]Simultaneous Multifunctional Sorption of PFOS and Cr(VI) on Activated Carbon Prepared by One-Step Microwave Activation
2015
Zhu, Zhibao | Zhou, Qin | Zhang, Meiyi | He, Guangzhi | Pan, Gang | Zhao, Yuan
Multifunctional sorbents, activated carbons (AC), were prepared by one-step microwave activation utilizing peanut shells and sunflower seed husks. The influence of the original particle size of raw materials on the yield and specific surface area of AC was studied, which reached 33.5 % and 1133.27 m²/g, respectively. The repetitive and competitive uptakes of perfluorooctane sulfonate (PFOS) and chromium were applied to investigate the sorption properties of AC. The sorption mechanisms were demonstrated using sulfur K-edge X-ray absorption near edge structure analysis (XANES). In the repetitive experiment, AC made from peanut shells (ACP₀₅) still retained 70 % removal efficiency of PFOS after the fourth sorption because sorbed PFOS might form a new organic phase that supplied effective sites for the hydrophobic partition of PFOS. However, the removal efficiency of Cr(VI) decreased dramatically from 60 to 11 % after the fourth uptake because electrostatic attraction was its only removal pathway. In the binary solutes system, ACP₀₅ possessed perfect sorption performance for both PFOS and Cr(VI), which were 885 and 192 mg/g, respectively. In the multivariate solutes system, the XANES spectra indicated that the thiol functional group existed in the resulting AC and a metal chelate was formed between thiol and Zn²⁺/Cu²⁺. Hence, the presence of Zn²⁺/Cu²⁺ further promoted the removal of PFOS and Cr(VI) through the electrostatic attraction between the anions and positive metal chelate.
Показать больше [+] Меньше [-]Subsidence from an Underground Coal Mine and Mine Wastewater Discharge Causing Water Pollution and Degradation of Aquatic Ecosystems
2015
Wright, Ian A. | McCarthy, Blake | Belmer, Nakia | Price, Philip
This study examined a single underground coal mine and investigated two aspects of its operation: the disposal of the mine waste through a discharge to a nearby river and the impact of subsidence from an underground longwall to a small waterway above. Water quality of the two waterways was monitored over a 2-year period with a monthly investigation over a 6-month period, which included collection of stream macroinvertebrates. Both mine activities modified surface water geochemistry and macroinvertebrate communities. Mean electrical conductivity (EC) increased in surface waters below the mine discharge, rising 4.8 times from (186 μS/cm) upstream to 1078 μS/cm below the waste inflow. Mean EC increased in a small stream that was disturbed by subsidence from longwall mining, rising 3.8 times from (247 μS/cm) upstream to 1195 μS/cm below. The mineral constituents of the increased salinities were different. The coal mine wastewater discharge was enriched with sodium and bicarbonate ions compared to sodium and chloride ions in the subsidence affected creek. Both the waste discharge and the subsidence caused increases in the concentrations of zinc by about four times and nickel by 20 to 30 times the background levels. The subsidence reduced dissolved oxygen to ecologically stressful levels and increased iron and manganese concentrations by about 20 times the background levels. Two of the key changes in stream ecosystems were a reduction in the proportion of mayfly larvae downstream of the mine waste discharge and mosquito larvae dominating (60–70 % of total abundance) the invertebrate community in the subsidence affected creek.
Показать больше [+] Меньше [-]The Influence of Weather Anomalies on Mercury Cycling in the Marine Coastal Zone of the Southern Baltic—Future Perspective
2015
Bełdowska, Magdalena
Despite the decreased emission loads of mercury, historical deposits of this metal in various compartments of the environment may become an additional diffuse source in the future. Global climate change manifests itself in the temperate zone in several ways: warmer winters, shorter icing periods, increased precipitation and heightened frequency of extreme events such as strong gales and floods, all of which cause disturbances in the rate and direction of mercury biogeochemical cycling. The present study was conducted at two sites, Oslonino and Gdynia Orlowo (both in the coastal zone of the Gulf of Gdansk), from which samples were collected once a month between January 2012 and December 2012. In the Southern Baltic region, climate changes can certainly enhance coast to basin fluxes of mercury and the transfer of bioavailable forms of this metal to the food web. They may also, in the future, contribute to uncontrollable increases of mercury in the seawater.
Показать больше [+] Меньше [-]Adsorption of Cobalt(II) from Aqueous Solutions by Fe3O 4/Bentonite Nanocomposite
2015
Hashemian, Saeedeh | Ṣaffārī, Ḥusayn | Ragabion, Saeedeh
Fe₃O₄and Fe₃O₄/bentonite were prepared by chemical co-precipitation method. They were characterized by X-ray powder diffraction (XRD), Fourier infrared spectroscopy (FTIR), and transmission electron microscope (TEM). Adsorption of cobalt(II) on the bentonite, Fe₃O₄, and Fe₃O₄/bentonite nanocomposite was studied. The results indicated that the metal oxides mainly occurred in the form of spinel structure of Fe₃O₄and the presence of Fe₃O₄significantly affect the surface area and pore structure of the bentonite. The specific surface area (Brunauer–Emmett–Teller (BET) method) of bentonite, Fe₃O₄, and Fe₃O₄/bentonite were determined to be 34.44, 98.44, and 140.5 m² g⁻¹, respectively. TEM image of Fe₃O₄/bentonite shows the particle diameter at 10 nm. The maximum adsorption capacity of cobalt(II) by Fe₃O₄/bentonite nanocomposite was determined to be 18.76 mg g⁻¹. The adsorption strongly depends on pH, where the removal efficiency increases as the pH turns to alkaline range (pH 9). The results suggest that higher adsorption capacity of composite than bentonite is attributed to the presence of Fe₃O₄. The adsorption process follows pseudo-second-order kinetics. The equilibrium data was analyzed by Langmuir model showing high correlation coefficient. The thermodynamic study of adsorption process showed that the adsorption of Co(II) onto Fe₃O₄/bentonite was carried out spontaneously.
Показать больше [+] Меньше [-]Species-Specific Responses to Ozone and Drought in Six Deciduous Trees
2015
Hayes, Felicity | Williamson, Jennifer | Mills, Gina
Saplings of alder (Alnus glutinosa), birch (Betula pendula), hazel (Corylus avellana), beech (Fagus sylvatica), ash (Fraxinus excelsior) and oak (Quercus robur) were exposed to five episodic ozone regimes in solardomes, with treatment means between 16 and 72 ppb. All trees were kept fully watered for the first 5 weeks of exposure, after which half the trees continued to be well-watered, whereas the other half were subjected to a moderate drought by applying approximately 45 % of the amount of water. Species-specific reductions in growth in response to both ozone and drought were found, which could result in reduced potential carbon sequestration in future ozone climates. In well watered conditions, the ozone treatments resulted in total biomass reductions for oak (18 %), alder (16 %), beech (15 %), ash (14 %), birch (14 %) and hazel (7 %) in the 72 ppb compared with the 32 ppb treatment. For beech, there was a reduction in growth in response to ozone in the well-watered treatment, but an increase in growth in response to ozone in the drought treatment, in contrast to the decreased growth that would occur as a result of stomatal closure in response to either the ozone or drought treatment, and therefore assumed to result from changes in hormonal signalling which could result in stomatal opening in combined ozone and drought conditions. For alder, in addition to a decrease in root biomass, there was reduced biomass of root nodules with high compared with low ozone for both drought-treated and well-watered trees. There was also a large reduction in the biomass of nodules from drought trees compared with well-watered. It is therefore possible that changes in the nitrogen dynamics of alder could occur due to reduced nodulation in both drought and elevated ozone conditions.
Показать больше [+] Меньше [-]Optimization, Kinetics, Isotherms, and Thermodynamics Studies of Antimony Removal in Electrocoagulation Process
2015
Song, Peipei | Yang, Zhaohui | Zeng, Guangming | Yang, Xia | Xu, Haiyin | Huang, Jing | Wang, Like
In this study, electrocoagulation (EC) with hybrid Fe–Al electrodes was used to remove antimony from contaminated surface water. Response surface methodology was applied to investigate the interactive effects of the operating parameters on antimony removal and optimize these variables. Results showed that the relationship between operating parameters and the response was well described by a second-order polynomial equation. Under the optimal conditions of current density 2.58 mA/cm², pH 5.24, initial concentration 521.3 μg/L, and time 89.17 min, more than 99 % antimony were removed. Besides, the antimony adsorption behavior in EC process was also investigated. Adsorption kinetics and isotherms studies suggested that the adsorption process followed well the pseudo-second-order kinetic model and the Langmuir adsorption model, respectively. Adsorption thermodynamics study revealed that the reaction was spontaneous, endothermic, and thermodynamically favorable. These results further proved that the main mechanism involved in antimony removal in EC process could be chemisorption.
Показать больше [+] Меньше [-]