Уточнить поиск
Результаты 1361-1370 из 6,536
Association of bisphenol A and its alternatives bisphenol S and F exposure with hypertension and blood pressure: A cross-sectional study in China
2020
Jiang, Shunli | Liu, Huimin | Zhou, Shuang | Zhang, Xu | Peng, Cheng | Zhou, Hao | Tong, Yeqing | Lü, Qing
Epidemiological studies have investigated the associations of bisphenol A (BPA) exposure with hypertension risk or blood pressure levels, but findings are inconsistent. Furthermore, the association between its alternatives bisphenol S and F (BPS and BPF) and hypertension risk are not yet known. We conducted a cross-sectional study in 1437 eligible participants without hypertension-related diseases, with complete data about blood pressure levels, hypertension diagnosis, and urinary bisphenols concentrations. Multivariable logistic and linear models were respectively applied to examine the associations of urinary bisphenols concentrations with hypertension risk and blood pressure levels. The dose-response relationship was explored by the restricted cubic spline model. Compared with the reference group of BPA, individuals in the middle and high exposure group had an adjusted odds ratio (OR) of 1.30 and 1.40 for hypertension, had a 3.08 and 2.82 mm Hg higher systolic blood pressure (SBP) levels, respectively, with an inverted “U” shaped dose-response relationship. Compared with the reference group of BPS, individuals in the second and third tertile had an adjusted OR of 1.49 and 1.48 for hypertension, had a 2.61 and 3.89 mm Hg increased levels of SBP, respectively, with a monotonic curve. No significant associations of BPF exposure with hypertension risk or blood pressure levels were found. BPA and BPS exposure were suggested to be associated with increased hypertension risk and blood pressure levels, with different dose-response relationships. Our findings have important implications for public health but require confirmation in prospective studies.
Показать больше [+] Меньше [-]Ticking bomb: Prolonged faecal shedding of novel coronavirus (2019-nCoV) and environmental implications
2020
Olusola-Makinde, Olubukola Olayemi | Reuben, Rine Christopher
The current global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a tremendous public health challenge globally. While the respiratory transmission of SARS-CoV-2 has been established, evolving reports on the impact of the gastrointestinal system and the prolonged faecal shedding of SARS-CoV-2 show the likelihood of faecally mediated transmission. The increasing evidential presence of SARS-CoV-2 in wastewater and faecal material poses a significant public health threat which may potentiate global vulnerability to high risk of human exposure through environmental drivers especially in less developed countries. While extensively exploring the likelihood of faecally mediated SARS-CoV-2 transmission, infection control and prevention measures aimed at mitigating this pandemic should holistically include environmental drivers.
Показать больше [+] Меньше [-]A field study of the fate of biosolid-borne silver in the soil-crop system
2020
Yang, Lu | Li, Simin | Wu, Longhua | Ma, Yibing | Christie, Peter | Luo, Yongming
Land application of biosolids is a major route for the introduction of silver (Ag) into the terrestrial environment. Previous studies have focused on the risks from Ag to the human food chain but there is still a lack of quantitative information on the flow of biosolid-borne Ag in the soil-crop system. Two long-term field experiments were selected to provide contrasting soil properties and tillage crops to investigate the fate of Ag from sequentially applied biosolids. Biosolid-borne Ag accumulated in the soil and < 1‰ of applied Ag was taken up by the crops. The biosolid-borne Ag also migrated down and accumulated significantly (p < 0.05) in the soil profile to a depth of 60–80 cm at an application rate of 72 t biosolids ha⁻¹. Soil texture significantly affected the downward transport of biosolid-borne Ag and the migration of Ag appeared to be more pronounced in a soil profile with a low clay content. Moreover, loss of Ag by leaching may not be related to the biosolid application rate. Leaching losses of Ag may have continued for some time after biosolid amendment was suspended. The results indicate that soil texture may be a key factor affecting the distribution of biosolid-borne Ag in the soil-crop system.
Показать больше [+] Меньше [-]Elevated mercury concentrations in biota despite reduced sediment concentrations in a contaminated coastal area, Harboøre Tange, Denmark
2020
Bjerregaard, Poul | Schmidt, Torben Grau | Mose, Maria Pedersen
Metals sequestered in coastal sediments are normally considered to be stable, but this investigation shows – somewhat surprisingly – that mercury concentrations in a previously contaminated area, Harboøre Tange, Denmark, have decreased since the 1980s. Mercury concentrations were determined in sediment and benthic biota and present values were compared to values in the 1980s and values from areas without known; history of mercury contamination. Concentrations in both the upper 20 cm of the sediments and; biota are considerably lower now compared to latest monitoring (1980s). Sediment.concentrations at most locations have decreased from the 100–300 ng Hg g⁻¹ dry weight (dw) level to levels below the Background Concentration (BC) of 50 ng Hg g⁻¹ dw defined by Oslo-Paris Convention for the Protection of the Marine Environment of the North-East Atlantic; some stations are at the 2–10 ng Hg g⁻¹ dw level characteristic of Danish coastal sediments with no known history of mercury contamination. Concentrations of mercury in the benthic biota along Harboøre Tange have also decreased since the 1980s but despite the lowered mercury concentrations in the sediments, concentrations in most samples of benthic invertebrate fauna still exceed those in uncontaminated coastal areas and also the Environmental Quality Standard (EQS) of 20 ng Hg g⁻¹ wet weight (≈100 ng Hg g⁻¹ dry weight) defined by the European Union’s Water Framework Directive. Concentration ranges in selected organisms are: (Harboøre Tange l980s/Harboøre Tange now/uncontaminated areas - given in ng Hg g⁻¹ dw): Periwinkles Littorina littorea 9000/150–450/55-77, blue mussels Mytilus edulis up to 9000/300–500/40–170, cockles Cerastoderma edule up to 8000/400–1200/200, brown shrimp Crangon crangon 700–2200/150-450/47, eelgrass Zostera marina up to 330/25–70/12. The present results - together with a literature review - show that a simple and straight forward relationship between the concentrations of mercury in sediment and benthic organisms does not necessarily exist.
Показать больше [+] Меньше [-]Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment
2020
Zhou, Jieyi | Li, Peng | Meng, Delong | Gu, Yabing | Zheng, Zhongyi | Yin, Huaqun | Zhou, Qingming | Li, Juan
Cadmium (Cd) contamination in paddy soil becomes increasingly prominent in recent years, which endangers the safe production of food crops. Cd-tolerant endophytes are ideal mediators for decreasing Cd content in rice plants, but their effects on the rice endophytic microbial community and gene expression profile have not yet been well elucidated. In this study, 58 endophytic bacteria from rice seeds were isolated and characterized. Five strains of them were selected based on their potential growth-promoting traits and strong Cd tolerance that could grow well under 4 mM Cd²⁺. By 16S ribosomal RNA (rRNA) identification, these five strains were designated as Enterobacter tabaci R2-7, Pantoea agglomerans R3-3, Stenotrophomonas maltophilia R5-5, Sphingomonas sanguinis R7-3 and Enterobacter tabaci R3-2. Pot experiments in relieving Cd stress in rice plants showed that the S. maltophilia R5-5 performed the strongest potential for reducing the Cd content in root and blade by 81.33% and 77.78%, respectively. The endophytic microbial community diversity, richness and composition were significantly altered in S. maltophilia R5-5 inoculated rice plants. Reverse-transcription qPCR (RT-qPCR) showed that the expression of Cd transporters, OsNramp5 and OsHMA2, were down-regulated in S. maltophilia R5-5-innoculated rice roots. The results indicate that the inoculation of endophytic bacteria S. maltophilia R5-5 provides a reference for alleviating the heavy metal contamination in paddy fields and can be a better alternative for guaranteeing the safe production of crops. Changes in the relative abundance of Cd-resistant microorganisms and the expression of Cd transporters might be the intrinsic factors affecting cadmium content in rice.
Показать больше [+] Меньше [-]Transcriptome analysis in Parhyale hawaiensis reveal sex-specific responses to AgNP and AgCl exposure
2020
Artal, Mariana Coletty | Pereira, Karina Danielle | Luchessi, Augusto Ducati | Okura, Vagner Katsumi | Henry, Theodore Burdick | Marques-Souza, Henrique | de Aragão Umbuzeiro, Gisela
Analysis of the transcriptome of organisms exposed to toxicants offers new insights for ecotoxicology, but further research is needed to enhance interpretation of results and effectively incorporate them into useful environmental risk assessments. Factors that must be clarified to improve use of transcriptomics include assessment of the effect of organism sex within the context of toxicant exposure. Amphipods are well recognized as model organisms for toxicity evaluation because of their sensitivity and amenability to laboratory conditions. To investigate whether response to metals in crustaceans differs according to sex we analyzed the amphipod Parhyale hawaiensis after exposure to AgCl and Ag nanoparticles (AgNP) via contaminated food. Gene specific analysis and whole genome transcriptional profile of male and female organisms were performed by both RT-qPCR and RNA-seq. We observed that expression of transcripts of genes glutathione transferase (GST) did not differ among AgCl and AgNP treatments. Significant differences between males and females were observed after exposure to AgCl and AgNP. Males presented twice the number of differentially expressed genes in comparison to females, and more differentially expressed were observed after exposure to AgNP than AgCl treatments in both sexes. The genes that had the greatest change in expression relative to control were those genes related to peptidase and catalytic activity and chitin and carbohydrate metabolic processes. Our study is the first to demonstrate sex specific differences in the transcriptomes of amphipods upon exposure to toxicants and emphasizes the importance of considering gender in ecotoxicology.
Показать больше [+] Меньше [-]An urban polluted river as a significant hotspot for water–atmosphere exchange of CH4 and N2O
2020
Wang, Rui | Zhang, Han | Zhang, Wei | Zheng, Xunhua | Butterbach-Bahl, Klaus | Li, Siqi | Han, Shenghui
Polluted urban river systems might be a strong source of atmospheric methane (CH₄) and nitrous oxide (N₂O), but so far only a few urban river systems have been quantified with regard to their source strength for greenhouse gases (GHGs). In this study, we measured loads of dissolved inorganic nitrogen and organic carbon, dissolved oxygen (DO) concentrations, and fluxes of CH₄ and N₂O from an urban river in Beijing, China during the course of an entire year. Fluxes calculated using the floating chamber approach or via the diffusion method with measurements of river water GHG concentrations showed comparable temporal variations. However, the flux magnitude based on the diffusion method was found to strongly depend on the underlying parameterization of the gas transfer velocity. In view of the large differences while applying different methodologies to estimate surface water GHG fluxes further studies are still needed to prove and eventually quantify the systematic errors which are likely caused by either the chamber technique or the approaches of individual diffusion models. For both the floating chamber and the diffusion-based flux estimates, strong seasonal variations in CH₄ and N₂O fluxes from the river surface were observed, with fluxes ranging from 3 to 8374 μg C m⁻² h⁻¹ for CH₄ and 1–3986 μg N m⁻² h⁻¹ for N₂O. The CH₄ fluxes were strongly negatively correlated with the DO concentration (P < 0.01). The highest N₂O fluxes were observed at times with low CH₄ fluxes (i.e., in spring and autumn). Annual CH₄ and N₂O fluxes totaled 19.3–79.4 and 17.4–44.8 kg C (N) ha⁻¹ yr⁻¹, respectively. These high fluxes are in agreement with estimates from the few other studies carried out for urban river systems to date and indicate that urban polluted river systems are a significant regional source of atmospheric GHGs.
Показать больше [+] Меньше [-]Characteristics of spatial and seasonal bacterial community structures in a river under anthropogenic disturbances
2020
Ouyang, Liao | Chen, Huirong | Liu, Xinyue | Wong, Ming Hung | Xu, Fangfang | Yang, Xuewei | Xu, Wang | Zeng, Qinghuai | Wang, Weimin | Li, Shuangfei
In this study, the seasonal characteristics of microbial community compositions at different sites in a river under anthropogenic disturbances (Maozhou River) were analyzed using Illumina HiSeq sequencing. Taxonomic analysis revealed that Proteobacteria was the most abundant phylum in all sites, followed by Actinobacteria, Bacteroidetes, Chloroflexi, Acidobacteria and Firmicutes. The variations of the community diversities and compositions between the seasons were not significant. However, significant differences between sites as well as water and sediment samples were observed. These results indicated that sites under different levels of anthropogenic disturbances have selected distinct bacterial communities. pH, dissolved oxygen (DO), concentrations of total nitrogen (TN) and heavy metals were the main factors that influence the diversity and the composition of bacterial community. Specifically, the relative abundance of Proteobacteria was negatively correlated with pH and DO and positively correlated with TN, while Actinobacteria and Verrucomicrobia showed the opposite pattern. Moreover, positive correlations between the relative abundances of Firmicutes and Bacteroidetes and the concentration of heavy metals were also found. Results of functional prediction analysis showed no significant differences of the carbon, nitrogen and phosphorus metabolism across the sites and seasons. Potential pathogens such as Vibrio, Arcobacter, Acinetobacter and Pseudomonas were found in these samples, which may pose potential risks for environment and human health. This study reveals the effect of anthropogenic activities on the riverine bacterial community compositions and provides new insights into the relationships between the environmental factors and the bacterial community distributions in a freshwater ecosystem under anthropogenic disturbances.
Показать больше [+] Меньше [-]Transcriptional analyses of acute per os exposure and co-exposure of 4-vinylcyclohexene and methylmercury-contaminated diet in adults of Drosophila melanogaster
2020
Piccoli, Bruna Candia | Segatto, Ana Lúcia Anversa | Loreto, Élgion L.S. | Moreira, José Cláudio Fonseca | Ardisson-Araújo, Daniel M.P. | Rocha, João B.T.
Continuous exposure to low levels of toxic substances can be associated with delayed physical disturbances, which can be preceded by changes in enzyme activities and gene expression. Thus, understanding changes in the transcriptional profile could help in recognition of early molecular events involved in the toxicity mechanism of toxicants. Vinylcyclohexene (VCH) and methylmercury (MeHg⁺) are xenobiotics, which do not present a completely elucidated mechanism of toxicity. Metabolites of both compounds have some overlapping chemical properties that involve moderate to high affinity for thiol and selenol groups. In this work, we characterized by deep-sequencing transcriptomic approach the effects of VCH and MeHg⁺ on the mRNA transcriptional profile of adults fruit flies (Drosophila melanogaster) after individual and concomitant exposure to VCH and MeHg⁺. The flies were separated into four groups: control, VCH, MeHg⁺, and VCH + MeHg⁺. After individual exposure, VCH deregulated 38 genes (of which the majority was up-regulated), whereas MeHg⁺ altered 26 genes (i.e., 14 down-regulated). VCH and MeHg⁺ co-exposure changed 72 genes with a high number of genes down-regulated. Together, the results suggest that although the compounds could have some similar protein targets (e.g., sulfhydryl-containing proteins), the transcriptional profile after individual exposures and co-exposure were completely different.
Показать больше [+] Меньше [-]Design of a Z-scheme g-C3N4/CQDs/CdIn2S4 composite for efficient visible-light-driven photocatalytic degradation of ibuprofen
2020
Liang, Mingxing | Zhang, Zhaosheng | Long, Run | Wang, Ying | Yu, Yajing | Pei, Yuansheng
A novel Z-scheme photocatalyst consisting of acidified graphitic carbon nitrogen (ag-C₃N₄)/carbon quantum dots/CdIn₂S₄ (CN/CQDs/CIS) was successfully synthesized via a one-step hydrothermal method. The optimized CN-2/CQDs-3/CIS exhibited significantly improved photocatalytic performance in the degradation of ibuprofen under visible-light irradiation. Based on a series of characterizations, the ag-C₃N₄ and CQDs were distributed uniformly on the surface of the cubic spinel structure of CIS, with intimate contact among the materials. This intimate heterogeneous interface facilitated the migration of photogenerated carriers, further leading to enhanced photocatalytic performance. These results also indicated that the CQDs not only connect ag-C₃N₄ with CIS through covalent bonds but also enhance the visible-light adsorption. According to the analysis of the UV–vis diffuse reflectance spectra (DRS) and Mott-Schottky curves, the mechanism of the Z-scheme heterojunction is proposed. The CQDs serve as electron mediators and transfer the electrons in the conduction band (CB) of ag-C₃N₄ to recombine with the holes in the valence band (VB) of CIS in the Z-scheme, leading to the enhanced separation efficiency of the photogenerated electrons in the CB of ag-C₃N₄ and the holes in the VB of CIS. The pollutant IBU was degraded by h⁺, ·O₂⁻ and ·OH, as determined by electron paramagnetic resonance (EPR) analysis.
Показать больше [+] Меньше [-]