Уточнить поиск
Результаты 1371-1380 из 6,536
microRNA expression profiles and personal monitoring of exposure to particulate matter
2020
Mancini, Francesca Romana | Laine, Jessica E. | Tarallo, Sonia | Vlaanderen, Jelle | Vermeulen, Roel | van Nunen, Erik | Hoek, Gerard | Probst-Hensch, Nicole | Imboden, Medea | Jeong, Ayoung | Gulliver, John | Chadeau-Hyam, Marc | Nieuwenhuijsen, Mark | de Kok, Theo M. | Piepers, Jolanda | Krauskopf, Julian | Kleinjans, Jos C.S. | Vineis, Paolo | Naccarati, Alessio
An increasing number of findings from epidemiological studies support associations between exposure to air pollution and the onset of several diseases, including pulmonary, cardiovascular and neurodegenerative diseases, and malignancies. However, intermediate, and potentially mediating, biological mechanisms associated with exposure to air pollutants are largely unknown. Previous studies on the human exposome have shown that the expression of certain circulating microRNAs (miRNAs), regulators of gene expression, are altered upon exposure to traffic-related air pollutants. In the present study, we investigated the relationship between particulate matter (PM) smaller than 2.5 μm (PM₂.₅), PM₂.₅ absorbance (as a proxy of black carbon and soot), and ultrafine-particles (UFP, smaller than 0.1 μm), measured in healthy volunteers by 24 h personal monitoring (PEM) sessions and global expression levels of peripheral blood miRNAs. The PEM sessions were conducted in four European countries, namely Switzerland (Basel), United Kingdom (Norwich), Italy (Turin), and The Netherlands (Utrecht). miRNAs expression levels were analysed using microarray technology on blood samples from 143 participants. Seven miRNAs, hsa-miR-24-3p, hsa-miR-4454, hsa-miR-4763-3p, hsa-miR-425-5p, hsa-let-7d-5p, hsa-miR-502-5p, and hsa-miR-505-3p were significantly (FDR corrected) expressed in association with PM₂.₅ personal exposure, while no significant association was found between miRNA expression and the other pollutants. The results obtained from this investigation suggest that personal exposure to PM₂.₅ is associated with miRNA expression levels, showing the potential for these circulating miRNAs as novel biomarkers for air pollution health risk assessment.
Показать больше [+] Меньше [-]New protocols for the selection and rearing of Metoncholaimus pristiurus and the first evaluation of oxidative stress biomarkers in meiobenthic nematodes
2020
Allouche, Mohamed | Nasri, Ahmed | Harrath, Abdel Halim | Mansour, Lamjed | Alwasel, Saleh | Beyrem, Hamouda | Bourioug, Mohamed | Geret, Florence | Boufahja, Fehmi
Meiobenthic nematodes have been designated as sensitive global models in the development of biomonitoring and ecotoxicology monitoring programs howbeit the sensitivity of these organisms against oxidative stress biomarkers have never been addressed. The present study aimed to decipher this research axis after selecting and culturing a single nematode species from an entire community through original laboratory protocols. The purpose of this investigation was to change the grain size of the sediment into the immediate environment of nematodes by progressively adding a biosubstrate made from Sepia officinalis endoskeletton. At the end of the experiment, Metoncholaimus pristiurus became the unique component of the nematode species when the sediment was enriched with 80% of S. officinalis powder. After the mono-species level had been achieved, the selected species was fed on an another biosubstrate made from bodies of Porcellio scaber under the identical laboratory controlled conditions of light and temperature adopted during the selection process. Accordingly, the bioassay protocol this study layed new foundations for the study of meiobenthic nematodes in the biomarker field. Our results revealed that, in case of M. pritiurus, discernible oxidative stress responses are valid for catalase and gluthatione S-transferase. Indeed, for both enzymes, a clear increase in the activity was recorded, and the response was more reinforced when zinc and permethrin were administrated in combination. The relevance of the protocols proposed in this work parallels their global applicability to reach and maintain the monospecific level in laboratory by using biosubstrates made from animals widely distributed. It is true also that our data provided the first results in terms of biochemical biomarkers for meiobenthic nematodes and showed that the selected taxa, M. pristiurus, could be one of the first marine taxa responding early to the tested stressors, zinc and permethrin, even at very low concentrations.
Показать больше [+] Меньше [-]The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases
2020
Li, Tian | Zhou, Qixing
In the past two decades, more and more attentions have been paid to soil-derived greenhouse gases (GHGs) including carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) because there are signs that they have rising negative impacts on the sustainability of the earth surface system. Farmlands, particularly paddy soils, have been regarded as the most important emitter of GHGs (nearly 17%) due to a large influx of fertilization and the abundance in animals, plants and microorganisms. Geobacter, as an electroactive microorganism widely occurred in soil, has been well studied on electron transport mechanisms and the direct interspecies electron transfer. These studies on Geobacter illustrate that it has the ability to be involved in the pathways of soil GHG emissions through redox reactions under anaerobic conditions. In this review, production mechanisms of soil-derived GHGs and the amount of these GHGs produced had been first summarized. The cycling process of CH₄ and N₂O was described from the view of microorganisms and discussed the co-culture relationships between Geobacter and other microorganisms. Furthermore, the role of Geobacter in the production of soil-derived GHGs is defined by biogeochemical cycling. The complete view on the effect of Geobacter on the emission of soil-derived GHGs has been shed light on, and appeals further investigation.
Показать больше [+] Меньше [-]A two-year field study of using a new material for remediation of cadmium contaminated paddy soil
2020
Zhao, Hanghang | Huang, Xunrong | Liu, Fuhao | Hu, Xiongfei | Zhao, Xin | Wang, Lu | Gao, Pengcheng | Ji, Puhui
Cadmium (Cd) as a highly toxic heavy metal can cause seriously harmful to human health. Rice consumption is a major source of Cd intake by Chinese. Reduce the Cd accumulation by rice is the key for reducing Cd hazard. Therefore, fly ash (FA) was used as raw material in this study, after the process of simplifying hydrothermal synthesis the zeolite (ZE), which was named as low-temperature-alkali roasting, a new intermediate materials (IP) was got. And the three mentioned materials (FA, IP and ZE) were used for a two-year field experiment. The study demonstrated that, application of IP and ZE could promote rice growth, as well as increase soil pH, and improve available Si content. The rice production increased by 36.1% and 29.8% in 2017 by IP and ZE applied, enhanced 35.9% and 31.7% in 2018, respectively. Meanwhile, the bio-available Cd decreased by 26.9% and 26% in 2017, reduced by 22.9% and 28% in 2018, respectively. Generally, the passivators could promote the conversion of acid-exchangeable fraction Cd to reducible fraction Cd. It can be conclude that, IP and ZE have good remediation effect on contaminated soil, and alleviated effects on Cd accumulation by rice, even though no significant difference was detected between IP and ZE. The synthesis process of IP of is simpler than ZE. The impact of IP on contaminated soil needs further exploration.
Показать больше [+] Меньше [-]The role of Fe oxyhydroxide coating, illite clay, and peat moss in nanoscale titanium dioxide (nTiO2) retention and transport in geochemically heterogeneous media
2020
Rastghalam, Zahra Sadat | Yan, Chaorui | Shang, Jianying | Cheng, Tao
Natural media such as soil and sediment contain mineralogical and organic components with distinct chemical, surface, and electrostatic properties. To better understand the role of various soil and sediment components on particle transport, columns were packed with quartz sand and natural sediment with added Fe oxyhydroxide coating, illite clay, and peat moss to investigate how these added components influence nTiO₂ retention and transport in geochemically heterogeneous medium. Results showed that nTiO₂ transport was low at pH 5, attributable to the electrostatic attraction between positively-charged nTiO₂ and negatively-charged medium. While illite did not notably affect nTiO₂ transport at pH 5, Fe oxyhydroxide coating increased nTiO₂ transport due to electrostatic repulsion between Fe oxyhydroxide and nTiO₂. Peat moss also increased nTiO₂ transport at pH 5, attributable to the increased DOC concentration, which resulted in higher DOC adsorption to nTiO₂ and intensified electrostatic repulsion between nTiO₂ and the medium. At pH 9, nTiO₂ transport was high due to the electrostatic repulsion between negatively-charged nTiO₂ and medium surfaces. Fe oxyhydroxide coating at pH 9 slightly delayed nTiO₂ transport due to electrostatic attraction, while illite clay and peat moss substantially inhibited nTiO₂ transport via straining/entrapment or electrostatic attraction. Overall, this study demonstrated that pH has a considerable effect on how minerals and organic components of a medium influence nTiO₂ transport. At low pH, electrostatic attraction was the dominant mechanism, therefore, nTiO₂ mobility was low regardless of the differences in mineralogical and organic components. Conversely, nTiO₂ mobility was high at high pH and nTiO₂ retention was dominated by straining/entrapment and sensitive to the mineralogical and organic composition of the medium.
Показать больше [+] Меньше [-]Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing
2020
Kant, Yogesh | Shaik, Darga Saheb | Mitra, Debashis | Chandola, H.C. | Suresh Babu, S. | Chauhan, Prakash
Continuous measurements of Black Carbon (BC) aerosol mass concentrations were carried at Dehradun (30.33°N, 78.04°E, 700 m amsl), a semi-urban site in the foothills of north-westHimalayas, India during January 2011–December 2017. We reported both the BC seasonal variations as well as mass concentrations from fossil fuel combustion (BCff) and biomass burning (BCbb) sources. Annual mean BC exhibited a strong seasonal variability with maxima during winter (4.86 ± 0.78 μg m⁻³) followed by autumn (4.18 ± 0.54 μg m⁻³), spring (3.93 ± 0.75 μg m⁻³) and minima during summer (2.41 ± 0.66 μg m⁻³). Annual averaged BC mass concentrations were 3.85 ± 1.16 μg m⁻³ varying from 3.29 to 4.37 μg m⁻³ whereas BCff and BCbb ranged from 0.11 to 7.12 μg m⁻³ and 0.13–3.6 μg m⁻³. The percentage contributions from BCff and BCbb to total BC are 66% and 34% respectively, indicating relatively higher contribution from biomass burning as compared to other locations in India. This is explained using potential source contribution function (PSCF) and concentration weighted trajectories (CWT) analysis which reveals the potential sources of BC originating from the north-west and eastern parts of IGP and the western part of the Himalayas that are mostly crop residue burning and forest fire regions in India. The annual mean ARF at top-of-atmosphere (TOA), at surface (SUR), and within the atmosphere (ATM) were found to be −14.84 Wm⁻², −43.41 Wm⁻², and +28.57 Wm⁻² respectively. To understand the impact of columnar aerosol burden on ARF, the radiative forcing efficiency (ARFE) was estimated and averaged values were −31.81, −91.63 and 59.82 Wm⁻² τ⁻¹ for TOA, SUR and ATM respectively. The high ARFE within the atmosphere indicates the dominance of absorbing aerosol (BC and dust) over Northwest Himalayas.
Показать больше [+] Меньше [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: Exposure and effects on wildlife
2020
Wallace, S.J. | de Solla, S.R. | Head, J.A. | Hodson, P.V. | Parrott, J.L. | Thomas, P.J. | Berthiaume, A. | Langlois, V.S.
Polycyclic aromatic compounds (PACs) are ubiquitous in the environment. Wildlife (including fish) are chronically exposed to PACs through air, water, sediment, soil, and/or dietary routes. Exposures are highest near industrial or urban sites, such as aluminum smelters and oil sands mines, or near natural sources such as forest fires. This review assesses the exposure and toxicity of PACs to wildlife, with a focus on the Canadian environment. Most published field studies measured PAC concentrations in tissues of invertebrates, fish, and birds, with fewer studies of amphibians and mammals. In general, PAC concentrations measured in Canadian wildlife tissues were under the benzo[a]pyrene (BaP) guideline for human consumption. Health effects of PAC exposure include embryotoxicity, deformities, cardiotoxicity, DNA damage, changes to DNA methylation, oxidative stress, endocrine disruption, and impaired reproduction. Much of the toxicity of PACs can be attributed to their bioavailability, and the extent to which certain PACs are transformed into more toxic metabolites by cytochrome P450 enzymes. As most mechanistic studies are limited to individual polycyclic aromatic hydrocarbons (PAHs), particularly BaP, research on other PACs and PAC-containing complex mixtures is required to understand the environmental significance of PAC exposure and toxicity. Additional work on responses to PACs in amphibians, reptiles, and semi-aquatic mammals, and development of molecular markers for early detection of biological responses to PACs would provide a stronger biological and ecological justification for regulating PAC emissions to protect Canadian wildlife.
Показать больше [+] Меньше [-]Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: A mesocosm study in a tropical shallow reservoir
2020
Amorim, Cihelio A. | Moura, Ariadne N.
Biomanipulation is an efficient tool to control eutrophication and cyanobacterial blooms in temperate lakes. However, the effects of this technique are still unclear for tropical ecosystems. Herein, we evaluated the effects of the biomanipulation on cyanobacterial biomass in a tropical shallow reservoir in Northeast Brazil. A mesocosm experiment was conducted in Tapacurá reservoir (Pernambuco) with eight treatments, in which we factorially manipulated the presence of submerged macrophytes (Ceratophyllum demersum), large herbivorous zooplankton (Sarsilatona serricauda), and nutrients (0.4 mg L⁻¹ of nitrogen and 0.5 mg L⁻¹ of phosphorus). On the first, fifth, and tenth days, we analyzed the total biomass of cyanobacteria, and the morphotypes coccoid, heterocyted filamentous, and non-heterocyted filamentous cyanobacteria; these components were compared through a three-way ANOVA. The bloom was composed mainly of five Microcystis morphospecies (coccoids) and Raphidiopsis raciborskii (heterocyted filaments). On the fifth day of the experiment, the combined addition of macrophytes and zooplankton was more efficient at controlling cyanobacterial biomass. On the tenth day, all macrophyte treatments showed significant cyanobacterial biomass reduction, decreasing up to 84.8%. On the other hand, nutrients and zooplankton, both isolated and combined, had no significant effect. Macrophytes also reduced the biomass of coccoids, heterocyted filaments, and non-heterocyted filaments when analyzed separately on the tenth day. Ceratophyllum demersum was more efficient at controlling the bloom than the addition of large herbivorous zooplankton, which could be related to allelopathy since cyanobacterial biomass was also reduced when nutrients were added. The addition of submerged macrophytes with allelopathic potential, associated with the increase of large herbivorous zooplankton, proved to be an efficient technique for controlling tropical cyanobacterial blooms.
Показать больше [+] Меньше [-]Toxicity of nickel and cobalt in Japanese flounder
2020
Sun, Zhaohui | Gong, Chunguang | Ren, Jiangong | Zhang, Xiaoyan | Wang, Guixing | Liu, Yufeng | Ren, Yuqin | Zhao, Yaxian | Yu, Qinghai | Wang, Yufen | Hou, Jilun
Nickel and cobalt are essential elements that become toxic at high concentrations. Little is known about nickel and cobalt toxicity in aquatic animals. This study aimed to investigate acute and chronic toxicity of nickel and cobalt in Japanese flounder (Paralichthys olivaceous), with emphasis on oxidative stress reactions, histopathological changes, and differences in gene expression. The lethal concentration for 50% mortality (LC₅₀) in 3 and 8 cm Japanese flounder exposed to nickel for 96 h was found to be 86.2 ± 0.018 and 151.3 ± 0.039 mg/L; for cobalt exposure, LC₅₀ was 47.5 ± 0.015 and 180.4 ± 0.034 mg/L, respectively. Chronic nickel and cobalt exposure caused different degrees of oxidative enzyme activity changes in gill, liver, and muscle tissues. Erythrocyte deformations were detected after acute or chronic exposure to nickel and cobalt. the nickel and cobalt exposure also caused pathological changes such as spherical swelling over other gill patches, rod-like proliferations in the gill patch epithelial cell layer, and disorder in hepatocyte arrangement, cell swelling, and cytoplasm loosening. RNA-Seq indicated that there were 184 upregulated and 185 downregulated genes in the liver of Japanese flounder exposed to 15 mg/L nickel for 28 d. For cobalt, 920 upregulated and 457 downregulated genes were detected. Among these differentially expressed genes, 162 were shared by both nickel and cobalt exposure. In both nickel and cobalt, pathways including fatty acid elongation, steroid biosynthesis, unsaturated fatty acid biosynthesis, fatty acid metabolism, PPAR signaling, and ferroptosis were significantly enriched. Taken together, these results aided our understanding of the toxicity of nickel and cobalt in aquatic animals.
Показать больше [+] Меньше [-]Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms
2020
Teng, Dongye | Zhang, Bingbing | Xu, Guomin | Wang, Bing | Mao, Gang | Wang, Jianxu | Sun, Jing | Feng, Xinbin | Yang, Zhugen | Zhang, Hua
Cadmium (Cd) is one of the most harmful and widespread environmental pollutants. Despite decades-long research efforts, the remediation of water contaminated by Cd has remained a significant challenge. A novel carbon material, pinecone biochar, was previously hypothesized to be a promising adsorbent for Cd, while so far, it has received little attention. This study evaluated the sorption capacity of pinecone biochar through isotherm experiments. Based on Langmuir model, the adsorption maximum for Cd(II) was up to 92.7 mg g⁻¹. The mechanism of Cd(II) adsorption on pinecone biochar was also explored through both thermodynamic and kinetics adsorption experiments, as well as both solution and solid-phase microstructure characterization. The solid-solution partitioning behaviour of Cd(II) fitted best with the Tόth model while the adsorption process followed a pseudo-second-order rate, suggesting that the Cd(II) adsorption on the pinecone biochar was mainly a chemisorption process. Microstructure characteristics and mechanism analysis further suggested that coprecipitation and surface complexation were the main mechanisms of Cd adsorption by biochar. Coprecipitation occurred mainly through the forms of Cd(OH)₂ and CdCO₃. Our results demonstrated that pinecone biochar was an efficient adsorbent which holds a huge potential for Cd(II) removal from aqueous solution.
Показать больше [+] Меньше [-]