Уточнить поиск
Результаты 1371-1380 из 7,290
Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals Полный текст
2022
Mazarji, Mahmoud | Minkina, Tatiana | Sushkova, Svetlana | Mandzhieva, Saglara | Barakhov, Anatoly | Barbashev, Andrey | Dudnikova, Tamara | Lobzenko, Iliya | Giannakis, Stefanos
The objective of this study was to demonstrate the feasibility and the relevance of combining biochar with the Fenton process for the simultaneous improvement of polycyclic aromatic hydrocarbons (PAHs) degradation and immobilization of heavy metals (HMs) in real soil remediation processes at circumneutral pH. The evaluation of PAHs degradation results was performed through multivariate statistical tools, including principal component analysis (PCA) and partial least squares (PLS). PCA showed that the level of biochar amendment decisively affected the degree of degradation of total PAHs, highlighting the role of biochar in catalyzing the Fenton reaction. Moreover, the PLS model was used to interpret the important features of each PAH's physico-chemical properties and its correlation to degradation efficiency. The electron affinity of PAHs correlated positively with the degradation efficiency only if the level of biochar amendment sat at 5%, explained by the ability of biochar to transfer the electrons to PAHs, improving the Fenton-like degradation. Moreover, the addition of biochar reduced the mobilization of HMs by their fixation on their surface, reducing the Fenton-induced metal leaching from the destruction of metal-organic complexes. In overall, these results on the high immobilization rate of HMs accompanied with additional moderate PAHs degradation highlighted the advantages of using a biochar-assisted Fenton-like reaction for sustainable remediation of technogenic soil.
Показать больше [+] Меньше [-]Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects Полный текст
2022
Le, Ve Van | Ko, So-Ra | Kang, Mingyeong | Lee, Sang-Ah | Oh, Hee-Mock | Ahn, Chi-Yong
The excessive proliferation of Microcystis aeruginosa can lead to ecological damage, economic losses, and threaten animal and human health. For controlling Microcystis blooms, microorganism-based methods have attracted much attention from researchers because of their eco-friendliness and species-specificity. Herein, we first found that a Paucibacter strain exhibits algicidal activity against M. aeruginosa and microcystin degradation capability. The algicidal activity of DH15 (2.1 × 10⁴ CFU/ml) against M. aeruginosa (2 × 10⁶ cells/ml) was 94.9% within 36 h of exposure. DH15 also degraded microcystin (1.6 mg/L) up to 62.5% after 72 h. We demonstrated that the algicidal activity of DH15 against M. aeruginosa can be mediated by physical attachment and indirect attack: (1) Both washed cells and cell-free supernatant could kill M. aeruginosa efficiently; (2) Treatment with DH15 cell-free supernatants caused oxidative stress, altered the fatty acid profile, and damaged photosynthetic system, carbohydrate, and protein metabolism in M. aeruginosa. The combination of direct and indirect attacks supported that strain DH15 exerts high algicidal activity against M. aeruginosa. The expression of most key genes responsible for photosynthesis, antioxidant activity, microcystin synthesis, and other metabolic pathways in M. aeruginosa was downregulated. Strain DH15, with its microcystin degradation capacity, can overcome the trade-off between controlling Microcystis blooms and increasing microcystin concentration. Our findings suggest that strain DH15 possesses great potential to control outbreaks of Microcystis blooms.
Показать больше [+] Меньше [-]Role of tectonics and climate on elevated arsenic in fluvial systems: Insights from surface water and sediments along regional transects of Chile Полный текст
2022
Tapia, Joseline | Mukherjee, Abhijit | Rodríguez, María Pía | Murray, Jesica | Bhattacharya, Prosun
Globally, arsenic (As) contamination is widespread in hydrological systems and the link between As enrichment and regional tectonic and climatic factors is still not well understood in orogenic environments. This work provides new insights on the relationship between As, tectonics, and climate by assessing the hydrochemistry of Chile, an active subduction zone with highly diverse natural settings. Selected study sites include fluvial courses along four regional transects connecting the Chilean coast to the Andes Cordillera in the northern, central, and southern areas of the country. The results indicate that As concentrations in surface water and fluvial sediments show a general positive correlation to crustal thickness and they tend to decrease progressively from northern to southern Chile. In contrast, As concentrations are negatively correlated to average annual precipitation which shows a significant increase toward southern Chile. From a regional tectonic perspective, northern Chile presents greater Andes shortening and higher crustal thicknesses, which induces increased crustal contamination and As content at the surface. Extremely low precipitation rates are also tied to local As enrichment and a sediment-starved trench that might favor higher plate coupling and shortening. On the contrary, decreased shortening of the Andes in southern Chile and related lower crustal thickness induces lower crustal contamination, thus acting as an As-poor provenance for surficial sediments and surface water. High precipitation rates further induce dilution of surface water, potential mobilization from the solid phase, and a significant amount of trench sediments that could induce lower plate coupling and lower shortening. At the local scale, a low potential for As mobilization was found in northern Chile where a greater distribution of As-bearing minerals was observed in sediments, mostly as finer particles (<63 μm). The abundance of Fe-oxides potentially acts as a secondary surficial sink of As under the encountered physicochemical conditions.
Показать больше [+] Меньше [-]Mechanical recycling of plastic waste as a point source of microplastic pollution Полный текст
2022
Suzuki, Go | Uchida, Natsuyo | Tuyen, Le Huu | Tanaka, Kosuke | Matsukami, Hidenori | Kunisue, Tatsuya | Takahashi, Shin | Viet, Pham Hung | Kuramochi, Hidetoshi | Ōsako, Masahiro
Plastic pollution has become one of the most pressing environmental issues. Recycling is a potential means of reducing plastic pollution in the environment. However, plastic fragments are still likely released to the aquatic environment during mechanical recycling processes. Here, we examined the plastic inputs and effluent outputs of three mechanical recycling facilities in Vietnam dealing with electronic, bottle, and household plastic waste, and we found that large quantities of microplastics (plastics <5 mm in length) are generated and released to the aquatic environment during mechanical recycling without proper treatment. Comparisons with literature data for microplastics in wastewater treatment plant effluents and surface water indicated that mechanical recycling of plastic waste is likely a major point source of microplastics pollution. Although there is a mismatch between the size of the microplastics examined in the present study and the predicted no-effect concentration reported, it is still possible that microplastics generated at facilities pose risks to the aquatic environment because there might be many plastic particulates smaller than 315 μm, as suggested by our obtained size distributions. With mechanical recycling likely to increase as we move to a circular plastics economy, greater microplastics emissions can be expected. It is therefore an urgent need to fully understand not only the scale of microplastic generation and release from plastic mechanical recycling but also the environmental risk posed by microplastics in the aquatic environment.
Показать больше [+] Меньше [-]Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: A review Полный текст
2022
Ulhassan, Zaid | Bhat, Javaid Akhter | Zhou, Weijun | Senan, Ahmed M. | Alam, Pravej | Ahmad, Parvaiz
The excessive arsenic (As) accumulation in plant tissues enforced toxic impacts on growth indices. So, the utilization of As-contaminated food leads to risks associated with human health. For the reduction of As concentrations in foods, it is obligatory to fully apprehend the take up, accretion, transportation and toxicity mechanisms of As within plant parts. This metalloid impairs the plant functions by disturbing the metabolic pathways at physio-biochemical, cellular and molecular levels. Though several approaches were utilized to reduce the As-accumulation and toxicity in soil-plant systems. Recently, engineered nanoparticles (ENPs) such a zinc oxide (ZnO), silicon dioxide or silica (SiO₂), iron oxide (FeO) and copper oxide (CuO) have emerged new technology to reduce the As-accumulation or phytotoxicity. But, the mechanistic approaches with systematic explanation are missing. By knowing these facts, our prime focus was to disclose the mechanisms behind the As toxicity and its mitigation by ENPs in higher plants. ENPs relives As toxicity and its oxidative damages by regulating the transporter or defense genes, modifying the cell wall composition, stimulating the antioxidants defense, phytochelatins biosynthesis, nutrients uptake, regulating the metabolic processes, growth improvement, and thus reduction in As-accumulation or toxicity. Yet, As-detoxification by ENPs depends upon the type and dose of ENPs or As, exposure method, plant species and experimental conditions. We have discussed the recent advances and highlight the knowledge or research gaps in earlier studies along with recommendations. This review may help scientific community to develop strategies such as applications of nano-based fertilizers to limit the As-accumulation and toxicity, thus healthy food production. These outcomes may govern sustainable application of ENPs in agriculture.
Показать больше [+] Меньше [-]Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France) Полный текст
2022
Alvarez-Mora, Iker | Bolliet, Valérie | Lopez-Herguedas, Naroa | Castro, Lyen | Anakabe, Eneritz | Monperrus, Mathilde | Etxebarria, Nestor
Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France) Полный текст
2022
Alvarez-Mora, Iker | Bolliet, Valérie | Lopez-Herguedas, Naroa | Castro, Lyen | Anakabe, Eneritz | Monperrus, Mathilde | Etxebarria, Nestor
The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone.
Показать больше [+] Меньше [-]Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France) Полный текст
2022
Alvarez-Mora, Iker | Bolliet, Valérie | Lopez-Herguedas, Naroa | Castro, Lyen | Anakabe, Eneritz | Monperrus, Mathilde | Etxebarria, Nestor | Department of Analytical Chemistry, University of the Basque Country UPV/ EHU ; Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] (UPV / EHU) | Plentzia Marine Station, University of the Basque Country ; Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] (UPV / EHU) | Ecologie Comportementale et Biologie des Populations de Poissons (ECOBIOP) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Department of Organic and Inorganic Chemistry, University of the Basque Country | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Agencia Estatal de Investigaci ́on (AEI) of Spain | European Regional Development Fund through project CTM2017–84763-C3–1-R | Basque Government through the financial support as a consolidated group of the Basque Research System (IT1213–19) | University of the Basque Country | Université de Pau et des Pays de l'Adour
International audience | The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone. ☆ This paper has been recommended for acceptance by. Eddy Y. Zeng. ☆☆ Contaminants of Emerging Concern in Glass Eel (Anguilla anguilla): Occurrence, Bioconcentration and Biotransformation.
Показать больше [+] Меньше [-]Quinolone distribution, trophodynamics, and human exposure risk in a transit-station lake for water diversion in east China Полный текст
2022
Liu, Yuanyuan | Hua, Zulin | Lü, Ying | Gu, Li | Luan, Chengmei | Li, Xiaoqing | Wu, Jianyi | Chu, Kejian
Quinolone antibiotics (QNs) pollution in lake environments is increasingly raising public concern due to their potential combined toxicity and associated risks. However, the spatiotemporal distribution and trophodynamics of QNs in transit-station lakes for water diversion are not well documented or understood. In this study, a comprehensive investigation of QNs in water, sediment, and aquatic fauna, including norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), and ofloxacin (OFL), was conducted in Luoma Lake, a major transit station for the eastern route of the South-to-North Water Diversion Project in China. The target QNs were widely distributed in the water (∑QNs: 70.12 ± 62.79 ng/L) and sediment samples (∑QNs: 13.35 ± 10.78 ng/g dw) in both the non-diversion period (NDP) and the diversion period (DP), where NOR and ENR were predominant. All the QNs were detected in all biotic samples in DP (∑QNs: 80.04 ± 20.59 ng/g dw). The concentration of ∑QNs in the water in NDP was significantly higher than those in DP, whereas the concentration in the sediments in NDP was comparable to those in DP. ∑QNs in the water-sediment system exhibited decreasing trends from northwest (NW) to southeast (SE) in both periods; however, the Kₒc (organic carbon normalized partition coefficients) of individual QNs in DP sharply rose compared with those in NDP, which indicated that water diversion would alter the environmental fate of QNs in Luoma Lake. In DP, all QNs, excluding NOR, were all biodiluted across the food web; whereas their bioaccumulation potentials in the SE subregion were higher than those in the NW subregion, which was in contrast to the spatial distribution of their exposure concentrations. The estimated daily QN intakes via drinking water and aquatic products suggested that residents in the SE side were exposed to greater health risks, despite less aquatic pollution in the region.
Показать больше [+] Меньше [-]Microbiota and mobile genetic elements influence antibiotic resistance genes in dust from dense urban public places Полный текст
2022
Feng, Tianshu | Han, Qian | Su, Wanghong | Yu, Qiaoling | Yang, Jiawei | Li, Huan
Many contaminants were carried by dust, a common environment media that is easy to contact with human beings, and antibiotic resistance genes (ARGs) as an emergency pollutant also harbor in dust and pose serious threats to human health especially those carried by opportunistic pathogens because inactivation of antibiotics caused by ARGs may enhance pathogenicity. Considering there is a gap of investigation of dust ARGs, 16 S rRNA gene sequences and high-throughput quantitative PCR were employed to obtain information of microbial communities and accumulated ARGs in dust from different urban places, including the malls, hospitals, schools and parks, to investigate the distribution and influencing factors of ARGs and discover the potential hosts of ARGs in dust. Here, 9 types of ARGs such as sulfonamide, tetracycline, and beta-lactamase and 71 subtypes of ARGs like sul1, tetM-01, and drfA1 were detected in dust. ARGs had varying distribution in different public places and seasons in dust. The abundances of total ARGs, MLSB and tetracycline genes were higher in spring than summer. The diversity of ARGs was highest in malls, follow by hospitals, schools, and parks. Additionally, multi-drug resistance genes in dust were more abundant in hospitals than in schools and parks. The microbes were distinguished as the most important driving factors for ARGs in dust, followed by the mobile genetic elements (MGEs) and different places, while dust physicochemical parameters only exert a negligible impact. Notably, several opportunistic pathogens like the Streptococcus, Vibrio, and Pseudomonas were inferred as potential hosts of high-risk ARGs such as mecA, tetM-02, and tetO-01 in dust because of strongly positive co-occurrence. These results imply that dust is likely an important reservoir of ARGs. We should realize that ARGs may be harbored in some opportunistic pathogens occur in dust and endanger human health because of dust contacting to human easily.
Показать больше [+] Меньше [-]Microplastics across biomes in diadromous species. Insights from the critically endangered Anguilla anguilla Полный текст
2022
Menéndez, Daniel | Álvarez, Almudena | Acle, Susana | Peón, Paloma | Ardura, Alba | García Vázquez, Eva
Microplastic pollution affects freshwater and marine biota worldwide, microplastics occurring even inside the organisms. With highly variable effects, from physical damage to toxicity of plastic compounds, microplastics are a potential threat to the biodiversity, community composition and organisms' health. This emerging pollutant could overstress diadromous species, which are exposed to both sea and river water in their life cycle. Here we have quantified microplastics in young European eel Anguilla anguilla, a critically endangered catadromous fish, entering three rivers in southwestern Bay of Biscay. River water, sediments and seawater were also analysed for microplastics. The microplastic type was identified using Fournier-Transform Infrared spectroscopy and then searched for their hazard potential at the European Chemical Agency site. Both riverine and sea microplastic pollution were predictors of eels’ microplastic profile (types of microplastics by shape and colour): A. anguilla juveniles entering European rivers already carry some marine microplastics and acquire more from river water. Potentially hazardous plastic materials were found from eels, some of them dangerous for aquatic life following the European Chemical Agency. This confirms microplastics as a potential threat for the species. Between-rivers differences for microplastics profiles persistent over years highlight the convenience of analysing and preventing microplastics at a local spatial scale, to save diadromous species from this stressor. Since the origin of microplastics present in glass eels seems to be dual (continental + seawater), new policies should be promoted to limit the entry of microplastics in sea and river waters.
Показать больше [+] Меньше [-]Enzymatic probe sonication for quick extraction of total bisphenols from animal-derived foods: Applicability to occurrence and exposure assessment Полный текст
2022
Xiao, Zhiming | Wang, Shi | Suo, Decheng | Wang, Ruiguo | Huang, Yuan | Su, Xiaoou
A high demand exists in bisphenols (BPs) screening studies for quick, reliable and straightforward analytical methods that generate data faster and simultaneously. Herein, we describe a combination of enzymatic probe sonication (EPS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for quick extraction and simultaneous quantification of eight important BPs in animal-derived foods. Results obtained demonstrated that the ultrasonic probe power could not only enhance the enzymatic hydrolysis efficiency, but also accelerate the liquid-liquid extraction procedure. Under optimized EPS parameters, one sample could be exhaustively extracted within 120 s, as compared with 12 h needed for the conventional enzymatic extraction which is more suitable for high-throughput analysis. The method was successfully applied to analyze residual BPs in animal-derived foods collected from Beijing, China. Widespread occurrence of BPA, BPS, BPF, BPAF, BPP, and BPB were found, with detection frequencies of 65.2%, 42.4%, 33.7%, 29.4%, 28.3%, and 27.2%, respectively. The highest total concentration levels of BPs (sum of the eight BPs analyzed, ΣBPs) were found in chicken liver (mean 12.2 μg/kg), followed by swine liver (6.37 μg/kg), bovine muscle (3.24 μg/kg), egg (2.03 μg/kg), sheep muscle (2.03 μg/kg), chicken muscle (1.45 μg/kg), swine muscle (1.42 μg/kg), and milk (1.17 μg/kg). The estimated daily intake (EDI) of BPs, based on the mean and 95th percentile concentrations and daily food consumptions, was estimated to be 5.687 ng/kg bw/d and 22.71 ng/kg bw/d, respectively. The human health risk assessment in this work suggests that currently BPs do not pose significant risks to the consumers because the hazard index (HI) was <1.
Показать больше [+] Меньше [-]