Уточнить поиск
Результаты 1381-1390 из 4,896
Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5 /AOD relationship in eastern China using radiosonde data
2019
Bai, Kaixu | Chang, Ni-Bin | Zhou, Jiayuan | Gao, Wei | Guo, Jianping
Atmospheric stability significantly influences the accumulation and dispersion of air pollutants in the near-surface atmosphere, yet few stability metrics have been applied as predictors in statistical PM₂.₅ concentration mapping practices. In this study, eleven stability metrics were derived from radiosonde soundings collected in eastern China for the time period of 2015–2018 and then applied as independent predictors to explore their potential in favoring the prediction of PM₂.₅. The statistical results show that the in situ PM₂.₅ concentration measurements correlated well with these stability metrics, especially at monthly and seasonal timescales. In contrast, correlations at the daily timescale differed markedly between stability metric and also varied with seasons. Nevertheless, the modeling results indicate that incorporating these stability metrics into the PM₂.₅ modeling framework rendered small contribution to PM₂.₅ prediction accuracy, yielding an increase of R² by < 5% and a reduction of RMSE by < 1 μg/m³ on average. Compared with other stability indices, the inversion depth and intensity appeared to have relative larger benefiting potential. In general, our findings indicate that including these stability metrics would not result in significant contribution to the PM₂.₅ prediction accuracy in eastern China since their effects could be partially overwhelmed or offset by other predictors such as AOD and boundary layer height.
Показать больше [+] Меньше [-]Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure
2019
Song, Yang | Cao, Chengjin | Qiu, Rong | Hu, Jiani | Liu, Mengting | Lu, Shibo | Shi, Huahong | Susman, Kathleen M. | He, Defu
Recent studies have demonstrated the occurrence of microplastic fibers (MFs) in soil environments. To determine whether MFs are harmful for soil biota, we evaluated toxic effects on terrestrial snails (Achatina fulica) after 28 d exposure to polyethylene terephthalate MFs at concentrations of 0.01–0.71 g kg−1 (dry soil weight). Digestion kinetics experiments on 24 snails showed that MFs can be ingested and excreted within 48 h. We found the appearance of cracks and deterioration on the surface of MFs after depuration by the digestive system. Prolonged exposure to 40 snails showed that 0.14–0.71 g kg−1 MFs caused an average reduction of 24.7–34.9% food intake and 46.6–69.7% excretion. 0.71 g kg−1 MFs induced significant villi damage in the gastrointestinal walls of 40% snails, but did not influence the histology of the liver and kidney. Moreover, 0.71 g kg−1 MFs exposure reduced glutathione peroxidase (59.3 ± 13.8%) and total antioxidant capacity (36.7 ± 8.5%), but elevated malondialdehyde level (58.0 ± 6.4%) in the liver, which indicates oxidative stress is involved in the toxic mechanism. Our results suggest that MFs have adverse impacts on the fitness of soil organisms, and highlight the ecological risks of microplastic pollution in terrestrial ecosystems.
Показать больше [+] Меньше [-]Contamination of water resources of a small island state by fireworks-derived perchlorate: A case study from Malta
2019
Pace, Colette | Vella, Alfred J.
We have previously reported on the ubiquitous presence of perchlorate in the deposited and airborne fine dusts of Malta and shown that the source of the chemical in the dusts of this small central Mediterranean island is fireworks. There are no local geologic or anthropogenic sources of perchlorate other than firework manufacture and display. The hypothesis was tested that ground-deposited perchlorate will be mobilized in runoff and would partly migrate to the water table and eventually also affect tap water, one third of which being derived from groundwater. Forty four percent of 36 groundwater samples contained perchlorate above detection limit with mean and median values of 1.09 and 1.1 μg L−1. Sixty-two percent of 16 runoff samples collected during storms contained perchlorate above detection limit with mean and maximum concentrations, respectively, of 50.8 and 129 μg L−1, values which are far too high to be explained by atmospheric inputs given that rainwater perchlorate levels are typically <3 μg L−1. Between 42 and 89% of the tap waters analyzed in three sampling campaigns contained perchlorate above detection limit and had mean concentrations ranging from 0.4 to 1.6 μg L−1 suggesting contamination levels similar to those reported from China but lower than levels reported from the USA. The phenomenon of contamination of the water resources of Malta by perchlorate is probably unique in that it results not from geologic or industrial inputs but from an intense and prolonged pyrotechnic activity that is deeply rooted in the popular culture of the islanders.
Показать больше [+] Меньше [-]Cr(VI) removal from a synthetic solution using a novel carbonaceous material prepared from oily sludge of tank bottom
2019
Yang, Huifen | Li, Zhaofeng | Fu, P. (Peng) | Zhang, Ge
A novel carbonaceous material (NCM), prepared by the pyrolyzation of the oily sludge of tank bottom, was proposed to remove Cr(VI) from a synthetic solution for the first time. The effects of initial Cr(VI) concentration, NCM dosage and initial solution pH on Cr(VI) removal and the adsorption kinetics, the adsorption isothem were investigated. The removal mechanism was studied by comparing the surface properties of NCM before and after the Cr(VI) removal. The results showed that NCM can effectively remove Cr(Ⅵ) from the synthetic solution with the increase of solution pH at equilibrium. At the initial Cr(Ⅵ) concentrations of 40, 100, 150 and 250 mg/L and NCM dosages of 1, 3, 6 and 8 g/L with initial solution pH of 2, the removal efficiency of Cr(VI) was 95.5, 96.8, 95.2 and 81.2%, and the solution pH at equilibrium reached 2.3, 3.5, 5.8 and 7.5, respectively. NCM was suitable for Cr(Ⅵ) removal while the initial Cr(VI) concentration was less than 100 mg/L and initial solution pH was lower than 2.5. Most of Cr(VI) was removed by the reduction of Fe2+ and S2− in NCM to Cr(III) and with the generation of stable FeCr2O4. Some Cr(VI) may be removed by reacting with Fe2+ and Ca2+ to produce CaCrO4 and FeCrO4 on the NCM surface. The dissolution of CaAl2Si2O8 and CaS in the solution increased the solution pH at equilibrium. NCM has been proved to be a material with dual functions both chemical reduction and adsorption.
Показать больше [+] Меньше [-]Identification of osteopontin as a biomarker of human exposure to fine particulate matter
2019
Ho, Chia-Chi | Wu, Wei-Te | Chen, Yu-Cheng | Liou, Saou-Hsing | Yet, Shaw-Fang | Lee, Chia-Huei | Tsai, Hui-Ti | Weng, Chen-Yi | Tsai, Ming-Hsien | Lin, Pinpin
Ambient particulate matter (PM) exposure is associated with pulmonary and cardiovascular diseases; however, there is scant research linking data on animal and human cells. The objective of this study was to investigate these associations. Vascular remodeling plays a crucial role in both pulmonary and cardiovascular diseases. Therefore, we conducted a transcriptomic analysis using vascular smooth muscle cells (VSMCs) to identify potential regulators or markers of PM exposure. We demonstrated that fine and coarse PM increased VSMC proliferation in mice. We conducted a genome-wide cDNA microarray analysis, followed by a pathway analysis of VSMCs treated with coarse PM for durations of 24, 48, and 72 h. Sixteen genes were discovered to be time-dependently upregulated and involved in VSMC proliferation. Osteopontin (OPN) is indicated as one of the regulators of these upregulated genes. Both fine and coarse PM from industrial and urban areas significantly increased OPN expression in VSMCs and macrophages. Moreover, oropharyngeal instillation of fine and coarse PM for 8 weeks increased the VSMCs in the pulmonary arteries of mice. OPN level was consistently increased in the lung tissues, bronchoalveolar lavage fluid, and serum of mice. Moreover, we analyzed the plasma OPN levels of 72 healthy participants recruited from the studied metropolitan area. Each participant wore a personal PM2.5 sampler to assess their PM2.5 exposure over a 24 h period. Our results indicate that personal exposure to fine PM is positively correlated with plasma OPN level in young adults. The data obtained in this study suggest that exposure to fine and coarse PM may cause pulmonary vascular lesions in humans and that OPN level may be a biomarker of PM exposure in humans.
Показать больше [+] Меньше [-]Strong adsorption of Polychlorinated Biphenyls by processed montmorillonite clays: Potential applications as toxin enterosorbents during disasters and floods
2019
Wang, Meichen | Safe, S. | Hearon, Sara E. | Phillips, Timothy D.
Polychlorinated biphenyls (PCBs) have been detected as prevalent environmental contaminants in water, food and biota. Previous studies in vitro have shown that a variety of sorbent materials, including carbon, can sorb PCBs; however, PCB sorbents that can be added to food or drinking water to decrease toxin bioavailability in humans and animals have not been reported. To address this problem, we have developed a broad-acting and highly effective sorbent for PCBs using montmorillonite clays reported to be safe for consumption in animals and humans. In this study, calcium montmorillonite clays were acid processed (APMs) and the interactions of six PCB congeners (PCB 77, 126, 153, 157, 154 and 155) on the surfaces of APMs were characterized. Computational models and isothermal analyses were used to derive surface capacities and affinities, delineate mechanisms and predict the thermodynamics of sorption. To confirm the safety and predict the efficacy of APMs against individual PCBs and common mixtures (Aroclors 1254 and 1260), we have also used a living organism (Hydra vulgaris) that is sensitive to toxins. APMs significantly protected hydra against the toxicity of PCBs and Aroclors. This finding was supported by studies showing tight binding; high capacity, affinity, and enthalpy; and a low therapeutic dose.
Показать больше [+] Меньше [-]The influence of oxytetracycline on the degradation and enantioselectivity of the chiral pesticide beta-cypermethrin in soil
2019
Jiang, Wenqi | Gao, Jing | Tei, Sei | Zhai, Wangjing | Liu, Donghui | Zhou, Zhiqiang | Wang, Peng
Pesticide residues most likely coexist with antibiotics due to the application of animal-based fertilizers in agriculture. In this study, the degradation and enantioselectivity of beta-cypermethrin in soil and chicken manure-amended soil were investigated. The effects of oxytetracycline on the soil microbial community were also estimated. The results showed that the half-life of beta-cypermethrin in the soil was 16.9 days and that the (+)-enantiomer was degraded preferentially in both pairs of enantiomers. The metabolites cis/trans-DCCA(3-(2′,2′-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid) and 3-PBA (3-Phenoxybenzoic acid) were detected. The trans-DCCA concentrations ranged from 0.094 to 0.120 mg/kg, which were higher than the concentrations of cis-DCCA (0.091–0.120 mg/kg) and 3-PBA (0.022–0.061 mg/kg). In the presence of oxytetracycline, beta-cypermethrin degradation was inhibited slightly, while the enantioselectivity was not affected. Oxytetracycline increased the enrichment and persistence of the metabolites. Addition of chicken manure decreased the cis-DCCA residue levels in the soil and alleviated the effect of oxytetracycline; however, chicken manure increased the accumulation and persistence of 3-PBA. In addition, oxytetracycline perturbed the structure of the soil microbial community. The abundance of Proteobacteria increased, while the abundances of Firmicutes and Actinobacteria decreased. These changes might affect the biodegradation of beta-cypermethrin and its metabolites. Combined pollution with antibiotics should be considered for its potential impact on pesticide residues.
Показать больше [+] Меньше [-]Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment
2019
Ravindra, Khaiwal | Thind, Parteek Singh | Mor, Sahil | Singh, Tanbir | Mor, Suman
The major objective of the current study is to estimate the groundwater quality and identify the likely sources of contamination in Chandigarh, India. Total 80 groundwater samples were collected from different locations and at various depths in the study area. Further, physcio-chemical analysis was done to estimate pH, electrical conductivity (EC), total dissolved solids, total hardness (TH), total alkalinity (TA), Na+, K+, Cl−, SO42−, PO43− and NO3−. The groundwater samples collected from shallow water sources were observed to contain higher amount of dissolved salts. EC, TA, Cl−, TH, Na+, and K+ were found relatively higher in the shallow aquifer (<150 ft). Based on the location of pollution sources at the surface and consecutive geo-statistical distribution of physicochemical characteristics, this study suggests that non-scientific disposal of municipal solid waste,dumping of industrial waste and agricultural activities, in the nearby areas, could lead to deterioration of groundwater of shallow aquifer. These observations were also confirmed using various water quality indices and outcomes of multivariate modeling, including principal component analysis. Health risk assessment for nitrates indicated that 29 groundwater samples pose non-carcinogenic health risk for children due to dermal and oral exposure. Hence, there is a need to establish a system for regularly assessing the groundwater quality so as to minimize public health risks.
Показать больше [+] Меньше [-]Occurrence, source, and risk assessment of atmospheric parent polycyclic aromatic hydrocarbons in the coastal cities of the Bohai and Yellow Seas, China
2019
Liu, Weijian | Xu, YunSong | Zhao, YongZhi | Liu, Qingyang | Yu, ShuangYu | Liu, Yang | Wang, Xin | Liu, Yu | Tao, Shu | Liu, Wenxin
Parent polycyclic aromatic hydrocarbons (PPAHs) in the ambient air of the coastal cities near the Bohai and Yellow Seas were measured over a full year. The range and geometric average of total PPAH₂₉ (29 species) were 5.16-1.22 × 10³ and 118 ng/m³, respectively, with 77 ± 14% in a gaseous phase. The 16 priority components accounted for 90 ± 4% of the total mass concentration. The incremental life cancer risk (ILCR) via inhalation exposure to the PPAHs (3.17 × 10⁻⁴) was underestimated by 80%, as only the priority PPAHs were considered. The air concentrations of PPAHs in the Bohai Sea area were generally higher (p < 0.01) than those in the Yellow Sea area. A significant increase (p < 0.01) in the levels of PPAHs and large fractions of high molecular weight (HMW) components were observed in winter. Absorption by particulate organic carbon dominated in gas-particle partitioning of the PPAHs, and the seasonal variations in gas-particle partitioning of the low and moderate molecular weight compounds were more noticeable relative to the HMW species. In summer, significantly higher concentrations of PPAHs were found in the daytime than during nighttime, while the opposite case occurred in winter (p < 0.05). The positive matrix factorization (PMF) results indicated greater contributions of coal and biomass combustion to the PPAH emissions in the coastal cities of the Bohai Sea area compared with the Yellow Sea area. The burning of coal and biomass served as the main source of PPAHs in winter, while traffic exhaust was the dominant source in other seasons. The potential source contribution function (PSCF) revealed the important impacts of the external inputs on the local PPAHs via air mass transport. The contributions of the resolved emission sources to the ILCR were clearly different from those of the mass concentrations, indicating the necessity for source-oriented risk assessments.
Показать больше [+] Меньше [-]Toxicological effects of As (V) in juvenile rockfish Sebastes schlegelii by a combined metabolomic and proteomic approach
2019
Xu, Lanlan | Lu, Zhen | Ji, Chenglong | Cong, Ming | Li, Fei | Shan, Xiujuan | Wu, Huifeng
Arsenic (As) is a metalloid element that is ubiquitous in the marine environment and its contamination has received worldwide attention due to its potential toxicity. Arsenic can induce multiple adverse effects, such as lipid metabolism disorder, immune system dysfunction, oxidative stress and carcinogenesis, in animals. Inorganic arsenic includes two chemical forms, arsenite (As (III)) and arsenate (As (V)), in natural environment. As (V) is the dominant form in natural waters. In the present study, metabolomic and proteomic alterations were investigated in juvenile rockfish Sebastes schlegelii exposed to environmentally relevant concentrations of As (V) for 14 d. The analysis of iTRAQ-based proteomics combined with untargeted NMR-based metabolomics indicated apparent toxicological effects induced by As (V) in juvenile rockfish. In details, the metabolites, including lactate, alanine, ATP, inosine and phosphocholine were significantly altered in As-treated groups. Proteomic responses suggested that As (V) could not only affected energy and primary metabolisms and signal transduction, but also influenced cytoskeleton structure in juvenile rockfish. This work suggested that the combined proteomic and metabolomic approach could shed light on the toxicological effects of pollutants in rockfish S. schlegelii.
Показать больше [+] Меньше [-]