Уточнить поиск
Результаты 1441-1450 из 8,010
Contributions of internal emissions to peaks and incremental indoor PM2.5 in rural coal use households Полный текст
2021
Men, Yatai | Li, Jianpeng | Liu, Xinlei | Li, Yaojie | Jiang, Ke | Luo, Zhihan | Xiong, Rui | Cheng, Hefa | Tao, Shu | Shen, Guofeng
Indoor air quality is critically important to the human as people spend most time indoors. Indoor PM₂.₅ is related to the outdoor levels, but more directly influenced by internal sources. Severe household air pollution from solid fuel use has been recognized as one major risk for human health especailly in rural area, however, the issue is significantly overlooked in most national air quality controls and intervention policies. Here, by using low-cost sensors, indoor PM₂.₅ in rural homes burning coals was monitored for ~4 months and analyzed for its temporal dynamics, distributions, relationship with outdoor PM₂.₅, and quantitative contributions of internal sources. A bimodal distribution of indoor PM₂.₅ was identified and the bimodal characteristic was more significant at the finer time resolution. The bimodal distribution maxima were corresponding to the emissions from strong internal sources and the influence of outdoor PM₂.₅, respectively. Indoor PM₂.₅ was found to be correlated with the outdoor PM₂.₅, even though indoor coal combustion for heating was thought to be predominant source of indoor PM₂.₅. The indoor-outdoor relationship differed significantly between the heating and non-heating seasons. Impacts of typical indoor sources like cooking, heating associated with coal use, and smoking were quantitatively analyzed based on the highly time-resolved PM₂.₅. Estimated contribution of outdoor PM₂.₅ to the indoor PM₂.₅ was ~48% during the non-heating period, but decreased to about 32% during the heating period. The contribution of indoor heating burning coals comprised up to 47% of the indoor PM₂.₅ during the heating period, while the other indoor sources contributed to ~20%. The study, based on a relatively long-term timely resolved PM₂.₅ data from a large number of rural households, provided informative results on temporal dynamics of indoor PM₂.₅ and quantitative contributions of internal sources, promoting scientific understanding on sources and impacts of household air pollution.
Показать больше [+] Меньше [-]Assessment of atmospheric pollutant emissions with maritime energy strategies using bayesian simulations and time series forecasting Полный текст
2021
Liu, Chia Hui | Duru, Okan | Law, Adrian Wing-Keung
With increasingly stringent regulations on emission criteria and environment pollution concerns, marine fuel oils (particularly heavy fuel oils) that are commonly used today for powering ships will no longer be allowed in the future. Various maritime energy strategies are now needed for the long-term upgrade that might span decades, and quantitative predictions are necessary to assess the outcomes of their implementation for decision support purpose. To address the technical need, a novel approach is developed in this study that can incorporate the strategic implementation of fuel choices and quantify their adequacy in meeting future environmental pollution legislations for ship emissions. The core algorithm in this approach is based on probabilistic simulations with a large sample size of ship movement in the designated port area, derived using a Bayesian ship traffic generator from existing real activity data. Its usefulness with scenario modelling is demonstrated with application examples at five major ports, namely the Ports of Shanghai, Singapore, Tokyo, Long Beach, and Hamburg, for assessment at Years 2020, 2030, and 2050 with three economic scenarios. The included fuel choices in the application examples are comprehensive, including heavy fuel oils, distillates, low sulphur fuel oils, ultra-low sulphur fuel oils, liquefied natural gas, hydrogen, biofuel, methanol, and electricity (battery). Various features are fine-tuned to reflect micro-level changes on the fuel choices, terminal location, and/or ship technology. Future atmospheric pollutant emissions with various maritime energy strategies implemented at these ports are then discussed comprehensively in details to demonstrate the usefulness of the approach.
Показать больше [+] Меньше [-]Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance Полный текст
2021
Markowicz, Anna | Bondarczuk, Kinga | Cycoń, Mariusz | Sułowicz, Sławomir
The effect of land application of sewage sludge on soil microbial communities and the possible spread of antibiotic- and metal-resistant strains and resistance determinants were evaluated during a 720-day field experiment. Enzyme activities, the number of oligotrophic bacteria, the total number of bacteria (qPCR), functional diversity (BIOLOG) and genetic diversity (DGGE) were established. Antibiotic and metal resistance genes (ARGs, MRGs) were assessed, and the number of cultivable antibiotic- (ampicillin, tetracycline) and heavy metal- (Cd, Zn, Cu, Ni) resistant bacteria were monitored during the experiment. The application of 10 t ha⁻¹ of sewage sludge to soil did not increase the organic matter content and caused only a temporary increase in the number of bacteria, as well as in the functional and structural biodiversity. In contrast to expectations, a general adverse effect on the tested microbial parameters was observed in the fertilized soil. The field experiment revealed a significant reduction in the activities of alkaline and acid phosphatases, urease and nitrification potential. Although sewage sludge was identified as the source of several ARGs and MRGs, these genes were not detected in the fertilized soil. The obtained results indicate that the effect of fertilization based on the recommended dose of sewage sludge was not achieved.
Показать больше [+] Меньше [-]Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment Полный текст
2021
Lian, Mingming | Wang, Longfei | Feng, Qiaoqiao | Niu, Liyong | Zhao, Zongsheng | Wang, Pengtao | Song, Chunpeng | Li, Xiaohong | Zhang, Zhijun
Heavy metal contamination has been threatening the health of human beings. To decrease the bio-toxicity of heavy metals, a thiol-functionalized nano-silica (SiO₂-SH) was adopted to remediate the soil contaminated by lead (Pb), cadmium (Cd) and copper (Cu). The remediation effect of SiO₂-SH on contaminated soils was investigated by the uptake of the heavy metals into lettuce and pakchoi in pot experiment. The bio-toxicity of the SiO₂-SH was evaluated, and its immobilization mechanisms were proposed by the fraction distribution of Cd, Pb and Cu. It was found that the SiO₂-SH can significantly reduce the uptake of Cd, Pb, Cu into pakchoi by 92.02%, 68.03%, 76.34% and into lettuce by 89.81%, 43.41%, 5.76%, respectively. The chemical species analyses of Cd, Pb, Cu indicate SiO₂-SH can transform the heavy metal in acid soluble states into reducible fraction and oxidizable fraction, thereby inhibiting the extraction of heavy metals into soil solution. The concentrations of microbial biomass carbon, organic matter, and cation exchange capacity of the soil increased while the soil bulk density decreased after remediation. Those changes demonstrate that SiO₂-SH not only has no bio-toxic impact on the soil environment but also improves the soil environment, which proves the prepared SiO₂-SH is environmental-friendly. The SiO₂-SH could be a promising amendment for heavy metal contaminated soils.
Показать больше [+] Меньше [-]Exogenous 24-Epibrassinolide stimulates root protection, and leaf antioxidant enzymes in lead stressed rice plants: Central roles to minimize Pb content and oxidative stress Полный текст
2021
Guedes, Flávia Raphaela Carvalho Miranda | Maia, Camille Ferreira | Silva, Breno Ricardo Serrão da | Batista, Bruno Lemos | Alyemeni, Mohammed Nasser | Ahmad, Parvaiz | Lobato, Allan Klynger da Silva
Lead (Pb) is an environmental pollutant that negatively affects rice plants, causing damage to the root system and chloroplast structures, as well as reducing growth. 24-Epibrasnolide (EBR) is a plant growth regulator with a high capacity to modulate antioxidant metabolism. The objective of this research was to investigate whether exogenous EBR application can mitigate oxidative damage in Pb-stressed rice plants, measure anatomical structures and evaluate physiological and biochemical responses connected with redox metabolism. The experiment was randomized with four treatments, including two lead treatments (0 and 200 μM PbCl₂, described as - Pb and + Pb, respectively) and two treatments with brassinosteroid (0 and 100 nM EBR, described as - EBR and + EBR, respectively). The results revealed that plants exposed to Pb suffered significant disturbances, but the EBR alleviated the negative interferences, as confirmed by the improvements in the root structures and antioxidant system. This steroid stimulated the root structures, increasing the epidermis thickness (26%) and aerenchyma area (50%), resulting in higher protection of this tissue against Pb²⁺ ions. Additionally, EBR promoted significant increases in superoxide dismutase (26%), catalase (24%), ascorbate peroxidase (54%) and peroxidase (63%) enzymes, reducing oxidative stress on the photosynthetic machinery in Pb-stressed plants. This research proved that EBR mitigates the toxic effects generated by Pb in rice plants.
Показать больше [+] Меньше [-]A simple technique to mitigate microplastic pollution and its mobility (via ballast water) in the global ocean Полный текст
2021
Naik, Ravidas Krishna | Chakraborty, Parthasarathi | D’Costa, Priya M. | N, Anilkumar | Mishra, R.K. | Fernandes, Veliton
Ballast water transport is considered as one of the major vectors for dispersal of microplastics around the global oceans. In this commentary, a simple, inexpensive solution has been proposed to reduce microplastic pollution and its mobility via ballast water. A screening chamber (with stainless steel three layered mesh) is proposed to be attached to the existing Ballast Water Treatment Systems (BWTSs) in cargo ships to filter back-flushed sea water from BWTSs. The three layered screens (500, 300 and 100 μm) will not only avoid clogging and easy separation of different size groups of microplastic particles but also help in smooth discharge of water to the sea. This technique is expected to remove a large number of microplastic particles (ranging from 0.0015 to 1020 million) from a single voyage. The proposed chamber may help to collect 0.0003–204 metric tons of particles/day, depending upon the geographical location of ballast intake in the global ocean. These estimations were made by considering a daily turnover of 0.033 billion tonnes of ballast water globally. This proposed screening chamber attached to the existing BWTSs in cargo ships, along with other region-specific ocean cleaning initiatives, will help in mitigating microplastic pollution in the global ocean.
Показать больше [+] Меньше [-]Grafting resulting in alleviating tomato plant oxidative damage caused by high levels of ofloxacin Полный текст
2021
Zhang, Zhihuan | Liu, Xuena | Lv, Yao | Li, Na | Xu, Kun
Antibiotic pollution has become a global problem threatening human health. Ofloxacin is one of the more widely used antibiotics, but reports on the reaction of plant to ofloxacin pollution are limited. In this study, using adversity-resistant (R), adversity-sensitive (S) and grafted plant S/R as models, we investigated the biological response of tomato to exogenous ofloxacin residues. The results showed that lower levels of ofloxacin treatment (5 mg L⁻¹ and 10 mg L⁻¹) promoted tomato growth, and 10 mg L⁻¹ ofloxacin was the critical dose to stimulate growth among the different treatments. In addition, the photosynthetic and fluorescence parameters, antioxidant enzyme activities and transcription-level expression of the enzymes were stimulated by low ofloxacin treatment. However, high ofloxacin treatment (20 mg L⁻¹ and 40 mg L⁻¹) exhibited a significantly negative effect on plant growth, photosynthesis, fluorescence parameters, antioxidant enzyme activities and transcript levels expression. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels increased with increasing ofloxacin concentrations, indicating that the oxidative damage of plants was severe with increasing doses. In contrast, the role of antioxidant enzymes in the antibiotic response was limited at high ofloxacin concentrations. The grafting experiment demonstrated that grafted plants had the ability to alleviate ofloxacin stress. In conclusion, ofloxacin can damage the photosynthetic machinery by promoting ROS accumulation, which results in the etiolation of tomato leaves and inhibits plant growth, but grafting can reduce its.
Показать больше [+] Меньше [-]Column versus batch methods for measuring PFOS and PFOA sorption to geomedia Полный текст
2021
Van Glubt, Sarah | Brusseau, Mark L. | Yan, Ni | Huang, Dandan | Khan, Naima | Carroll, Kenneth C.
The objective of this study is to compare the consistency between column and batch experiment methods for measuring solid-phase sorption coefficients and isotherms for per and polyfluoroalkyl substances (PFAS). Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are used as representative PFAS, and experiments are conducted with three natural porous media with differing geochemical properties. Column-derived sorption isotherms are generated by conducting multiple experiments with different input concentrations (multi-C₀ method) or employing elution-front integration wherein the entire isotherm is determined from a single breakthrough curve (BTC) elution front. The isotherms generated with the multi-C₀ column method compared remarkably well to the batch isotherms over an aqueous concentration range of 3–4 orders of magnitude. Specifically, the 95% confidence intervals for the individual isotherm variables overlapped, producing statistically identical regressions. The elution-front integration isotherms generally agreed with the batch isotherms, but exhibited noise and systematic deviation at lower concentrations in some cases. All data sets were well described by the Freundlich isotherm model. Freundlich N values ranged from 0.75 to 0.81 for PFOS and was 0.87 for PFOA and are consistent with values reported in the literature for different geomedia. The results of this study indicate that column and batch experiments can measure consistent sorption isotherms and sorption coefficients for PFOS and PFOA when robust experimental setup and data analysis are implemented.
Показать больше [+] Меньше [-]Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: Geochemical characteristics and controlling factors Полный текст
2021
Xiao, Jun | Han, Xiaoxiao | Sun, Shouqin | Wang, Lingqing | Rinklebe, Jörg
Terrestrial mosses are promising tracers for research concerning metal atmospheric deposition and pollution. Concentrations of Cr, Co, Ni, Zn, Sr, Cd, Ba, and Pb in different moss species from Mountain Gongga, China were analyzed to investigate the effects of growth substrates, geographic elevation, and type of moss species on the accumulation characteristics of heavy metals, as well as to identify heavy metal sources. The ability of heavy metals to accumulate in moss varied significantly, with low concentrations of Cd and Co; medium concentrations of Cr, Ni, and Pb; and high concentrations of Zn, Sr, and Ba. Elevation significantly influenced the accumulation characteristics of heavy metals, with high concentrations found at lower elevations due to proximal pollution. Growth substrate and moss species were found to have certain influence on the bioconcentration capacities of heavy metals in moss in this study. Correlation analysis showed similar sources for Sr, Zn, and Ba, as well as for Ni, Co, and Cr. The positive matrix factorization (PMF) model was consistent with atmospheric deposition of Pb and Cd; substrate sources of Cr, Co, and Ni; and anthropogenic sources of Ba, Sr, and Zn. This research characterized the accumulation characteristics of heavy metals and their influence factors in different mosses found in alpine ecosystems and provides a reference for future studies in similar areas.
Показать больше [+] Меньше [-]Effects of polycyclic aromatic hydrocarbon structure on PAH mineralization and toxicity to soil microorganisms after oxidative bioremediation by laccase Полный текст
2021
Zeng, Jun | Li, Yanjie | Dai, Yeliang | Wu, Yucheng | Lin, Xiangui
While bioremediation using soil microorganisms is considered an energy-efficient and eco-friendly approach to treat polycyclic aromatic hydrocarbon (PAH)-contaminated soils, a variety of polar PAH metabolites, particularly oxygenated ones, could increase the toxicity of the soil after biodegradation. In this study, a typical bio-oxidative transformation of PAH into quinones was investigated in soil amended with laccase using three PAHs with different structures (anthracene, benzo[a]anthracene, and benzo[a]pyrene) to assess the toxicity after oxidative bioremediation. The results show that during a 2-month incubation period the oxidation process promoted the formation of non-extractable residues (NERs) of PAHs, and different effects on mineralization were observed among the three PAHs. Oxidation enhanced the mineralization of the high-molecular-weight (HMW) PAHs (benzo[a]anthracene and benzo[a]pyrene) but inhibited the mineralization of the low-molecular-weight (LMW) PAH (anthracene). The inhibition of anthracene suggests increased toxicity after oxidative bioremediation, which coincided with a decrease in soil nitrification activity, bacterial diversity and PAH-ring hydroxylating dioxygenase gene copies. The analysis of PAH metabolites in soil extract indicated that oxidation by laccase was competitive with the natural transformation processes of PAHs and revealed that intermediates other than quinone metabolites increased the toxicity of soil during subsequent degradation. The different metabolic profiles of the three PAHs indicated that the toxicity of soil after PAH oxidation by laccase was strongly affected by the PAH structure. Despite the potential increase in toxicity, the results suggest that oxidative bioremediation is still an eco-friendly method for the treatment of HMW PAHs since the intermediates from HMW PAHs are more easily detoxified via NER formation than LMW PAHs.
Показать больше [+] Меньше [-]