Уточнить поиск
Результаты 1451-1460 из 4,935
Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties Полный текст
2019
Cao, Xuerui | Wang, Xiaozi | Tong, Wenbin | Gurajala, Hanumanth Kumar | Lu, Min | Hamid, Yasir | Feng, Ying | He, Zhenli | Yang, Xiaoe
Heavy metals contamination in agricultural soil has become a worldwide problem, and soil characteristics modulate metal availability in soils. Four field experiments were conducted simultaneously to evaluate concentration and distribution of cadmium (Cd) and lead (Pb) in 39 oilseed rape cultivars at four agricultural locations with different contamination levels of Cd and Pb, as well as the influence of soil characteristics together with soil total and bioavailable Cd and Pb concentration on metal transfer from soil to oilseed rape. Shoot concentrations of Cd and Pb in oilseed rape cultivars ranged from 0.09 to 3.18 and from 0.01 to 10.5 mg kg⁻¹ across four sites. For most cultivars, Cd concentration in root or shoot were higher than pod and lowest in seed, while the highest Pb concentration was observed in root followed by shoot and seed. Stepwise multiple linear regression analysis allows for a better estimation of Cd and Pb concentration in oilseed rape while taking soil properties into consideration. The results demonstrated that Cd and Pb concentration in oilseed rape were correlated with soil organic matter (OM), cation exchange capacity (CEC), available phosphorus (AP), available potassium (AK), sand, soil total and available Cd and Pb concentration, and R² varied from 0.993 to 0.999 (P < 0.05). The Cd and Pb levels found in oilseed rape indicated its phytoextraction potential for Cd and Pb co-contaminated agricultural soils in winter without stopping agricultural activities.
Показать больше [+] Меньше [-]Potential for mitigating global agricultural ammonia emission: A meta-analysis Полный текст
2019
Ti, Chaopu | Xia, Longlong | Chang, Scott X. | Yan, Xiaoyuan
Ammonia (NH3) emission from agricultural sources has contributed significantly to air pollution, soil acidification, water eutrophication, biodiversity loss, and declining human health. Although there are numerous strategies for reducing NH3 emission from agricultural systems, the effectiveness of these measures is highly variable. Furthermore, the integrated assessment of measures to reduce NH3 emission both from livestock production and cropping systems based on animal and crop type is lacking. Therefore, we conducted a global meta-analysis and integrated assessment of measures to reduce NH3 emission from agricultural systems. Most of the studied mitigation strategies were effective in reducing NH3 emission. In the livestock production system, dietary additive, urease inhibitor (UI), manure acidification and deep manure placement have the highest mitigation potential relative to other mitigation strategies, with reduction ranges of 35.1–54.2%, 24.3–68.7%, 88.8–95.0%, and 93.8–99.7%, respectively, relative to the control, while manure storage management could significantly reduce NH3 emission by 70.0–82.1%. In the cropping system, fertilizer source, use of enhanced efficiency fertilizers, and method of field application are most effective for reducingNH3 emission. The use of ammonium nitrate, controlled release fertilizer (CRF), and deep placement of fertilizers could reduce NH3 emission by 88.3, 56.8, and 48.0%, respectively. Choosing a proper fertilizer is critical for decreasing NH3 emission from cropping systems. We conclude that carefully planned and adopted strategies suited for local conditions are promising for minimizing NH3 emission from agricultural systems on a global scale, while possible effects of those mitigation measures on the emission of greenhouse gases should be studied in the future.
Показать больше [+] Меньше [-]Real-time combustion rate of wood charcoal in the heating fire basin: Direct measurement and its correlation to CO emissions Полный текст
2019
Deng, Mengsi | Li, Jiarong | Zhang, Shuangqi | Shan, Ming | Baumgartner, Jill | Carter, Ellison | Yang, Hsu-tung
Previous studies of solid fuel emissions in household stoves focused more on emission measurements of the overall combustion process instead of the dynamic burning rate and its connection to the emissions. This study put forward a measurement system to monitor the dynamic fuel burning rate and emission rate directly, and explored their relationships during different combustion phases. Experiments were conducted using two types of wood charcoal consumed in a small open pan (i.e. fire basin) used commonly for space heating in rural China. The measured real-time CO emission rate (ERCO), fuel burning rate (BRF), and calculated carbon burning rate (BRC) all rose and then subsided as the combustion progressed. The relationships between ERCO and BRF and between ERCO and BRC were different for the two charcoals during a phase with rising carbon content in the combusted fuel (Phase I), likely because moisture evaporation and volatile matter release were the dominant processes and the reaction was complex during this phase. ERCO and BRF or BRC had linear relationships during a phase with stable carbon content in the combusted fuel (Phase II) for the two charcoals, which may be generalized to other solid fuels, because this phase is associated to fixed carbon dominating phase which usually exist during solid fuel combustion. The study presented a novel measurement approach to the combustion properties of solid fuels. The results implied that a complex relationship between the combustion and pollutant emissions existed in Phase I, and presented the possibility of estimating the fuel burning rate based on emission measurements in Phase II, or vice versa.
Показать больше [+] Меньше [-]Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only Полный текст
2019
Jacques, Mauricio Tavares | Bornhorst, Julia | Soares, Marcell Valandro | Schwerdtle, Tanja | Garcia, Solange | Ávila, Daiana Silva
Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bioaccumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels.
Показать больше [+] Меньше [-]Speciation and location of arsenic and antimony in rice samples around antimony mining area Полный текст
2019
Wu, Tong-Liang | Cui, Xiao-Dan | Cui, Pei-Xin | Ata-Ul-Karim, Syed Tahir | Sun, Qian | Liu, Cun | Fan, Ting-Ting | Gong, Hua | Zhou, Dong-Mei | Wang, Yurun
Arsenic (As) and antimony (Sb) are considered as priority environmental pollutants and their accumulation in crop plants particularly in rice has posed a great health risk. This study endeavored to investigate As and Sb contents in paired soil-rice samples obtained from Xikuangshan, the world largest active Sb mining region, situated in China, and to investigate As speciation and location in rice grains. The soil and rice samples were analyzed by coupling the wet chemistry, laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), synchrotron-based micro X-ray fluorescence mapping (μ-XRF) and micro X-ray absorption near-edge structure (μ-XANES) spectroscopy. The results of field survey indicated that the paddy soil in the region was co-polluted by Sb (5.91–322.35 mg kg−1) and As (0.01–57.21 mg kg−1). Despite the higher Sb concentration in the soil, rice accumulated more As than Sb indicating the higher phytoavailability of As. Dimethylarsinic acid (DMA) was the predominant species (>60% on average) in the rice grains while the percentage of inorganic As species was 19%–63%. The μ-XRF mapping of the grain section revealed that the most of As was distributed and concentrated in rice husk, bran and embryo. Sb was distributed similarly to As but was not in the endosperm of rice grain based on LA-ICP-MS. The present results deepened our understanding of the As/Sb co-pollution and their association with the agricultural-product safety in the vicinity of Sb mining area.
Показать больше [+] Меньше [-]Cr(VI) removal from soils and groundwater using an integrated adsorption and microbial fuel cell (A-MFC) technology Полный текст
2019
Zhang, Tingting | Hu, Liyang | Zhang, Minglu | Jiang, Mengyun | Fiedler, H. (Heidelore) | Bai, Wenrong | Wang, Xiaohui | Zhang, Dayi | Li, Zetang
Remediation of hexavalent chromium [Cr(VI)] has been widely studied for its high mobility and toxicity. As Cr(VI) migrates in natural environment, both soils and groundwater are contaminated simultaneously. In the present study, a novel reactor combining adsorption and microbial fuel cell (A-MFC) using Platanus acerifolia leaves was developed for removing Cr(VI) from groundwater and soils. When initial Cr(VI) concentration was 50 mg/L, the adsorption efficiency of A-MFC achieved 98% after 16 h. Afterwards, the leaves were used for fabricating an MFC-integrated leaching reactor. The A-MFC significantly improved the overall Cr(VI) removal efficiency through leaching and 40% of Cr(VI) in the soil column was removed. The electrical voltage and current of A-MFC reactor achieved averagely 343 mV and 141 μA to maintain the system operation without extra energy supply. This novel A-MFC reactor is an environmentally friendly technology which achieved efficient Cr(VI) removal from groundwater and soils using natural materials, proving the concept that integrated self-remediation of Cr(VI) in contaminated soil and groundwater with natural material and energy.
Показать больше [+] Меньше [-]Recent changes of trans-boundary air pollution over the Yellow Sea: Implications for future air quality in South Korea Полный текст
2019
Bhardwaj, Piyush | Ki, Seo J. | Kim, Youn H. | Woo, Jung H. | Song, Chang K. | Park, Soon Y. | Song, Chul H.
The influence of air pollutants originating from the Chinese region on air quality over South Korea has been a major concern for policymakers. To investigate the inter-annual trends of the long-distance transport of air pollutants from China to South Korea, multi-year trend analysis was carried out for Aerosol Optical Depth (AOD, as a proxy of particulate matter), and CO (a water-insoluble air pollutant) and SO₂ (a partially water-soluble air pollutant), over three regions in Northeast Asia. Air pollutants are typically long-range transported from the highly polluted parts of China to South Korea through the Yellow Sea. Taking advantage of this geographical merit, we carried out the multi-year trend analysis with a special focus on the Yellow Sea region. Decreasing trends of about 5–10%, 13–17% and 55–61% during the last decade were observed in surface CO, AOD and tropospheric SO₂ columns over the North China Plain (NCP), Yellow Sea (YS), and South Korea (SK), respectively. Such decreasing trends were also found consistently during the last three, five, and seven years, indicating that the changes in pollution levels are likely in response to recent policy measures taken by the Chinese and Korean governments to improve air quality over the regions. Due to these efforts, the amounts of air pollutants transported from China to South Korea are expected to decrease in future years, to the likely rates of 1.50 ppb yr⁻¹, 0.05 DU yr⁻¹, and 0.56 μg m⁻³ yr⁻¹ over the YS region for CO, SO₂, and PM₂.₅, respectively. Given the ambitious plans recently announced by the Chinese government for the 21st meeting of Conference of Parties (COP21) and its co-control effects, the suggested percentage rates may even be conservative numbers. This analysis is expected to provide South Korean policymakers with valuable information to establish new air pollution policies in South Korea.
Показать больше [+] Меньше [-]The effect of intensified illuminance and artificial light at night on fitness and susceptibility to abiotic and biotic stressors Полный текст
2019
May, Dyllan | Shidemantle, Grascen | Melnick-Kelley, Quentin | Crane, Kelly | Hua, Jessica
Changing light conditions due to human activities represents an important emerging environmental concern. Although changes to natural light conditions can be independently detrimental, in nature, organisms commonly face multiple stressors. To understand the consequences of altered light conditions, we exposed a model amphibian (wood frog; Lithobates sylvaticus) to a control and two anthropogenic light conditions: intensified daytime illuminance and artificial light at night - ALAN (intensified daytime illuminance + extended photoperiod). We measured (1) metrics of fitness (hatching success as well as survival to, size at, and time to metamorphosis) (2) susceptibility (time to death) to a commonly co-occurring anthropogenic stressor, road salt (NaCl) and (3) susceptibility (infection load) to a common parasite (trematode). We also explored behavioral (swimming activity) and physiological (baseline corticosterone (CORT) release rates) changes induced by these light conditions, which may mediate changes in the other measured parameters. We found that both intensified daytime illuminance and ALAN reduced hatching success. In contrast, for amphibians that successfully hatched, neither treatment affected amphibian survival or time to metamorphosis but individuals exposed to ALAN were larger at metamorphosis. The light treatments also had marginal effects; individuals in ALAN treatments were more susceptible to NaCl and trematodes. Finally, tadpoles exposed to ALAN moved significantly less than tadpoles in the control and intensified daytime illuminance treatments, while light had no effect on CORT release rate. Overall, changes in light conditions, in particular ALAN, significantly impacted an amphibian model in laboratory conditions. This work underscores the importance of considering not only the direct effects of light on fitness metrics but also the indirect effects of light with other abiotic and biotic stressors. Anthropogenic-induced changes to light conditions are expected to continue increasing over time so understanding the diverse consequences of shifting light conditions will be paramount to protecting wildlife populations.
Показать больше [+] Меньше [-]Microplastics in the crustaceans Nephrops norvegicus and Aristeus antennatus: Flagship species for deep-sea environments? Полный текст
2019
Cau, Alessandro | Avio, Carlo Giacomo | Dessì, Claudia | Follesa, Maria Cristina | Moccia, Davide | Regoli, Francesco | Pusceddu, Antonio
Ingestion of microplastics (MPs) has been documented in several marine organisms, but their occurrence in deep-sea species remains almost unknown. In this study, MPs were investigated in two economically and ecologically key crustaceans of the Mediterranean Sea, the Norwegian lobster Nephrops norvegicus and the shrimp Aristeus antennatus. Both the species were collected from 14 sites around Sardinia Island, at depths comprised between 270 and 660 m. A total of 89 and 63 stomachs were analysed for N. norvegicus and A. antennatus respectively, and more than 2,000 MPs-like particles were extracted and sorted for identification and characterization by μFT-IR. In N. norvegicus, 83% of the specimens contained MPs, with an average abundance of 5.5 ± 0.8 MPs individual−1, while A. antennatus showed a lower frequency of ingestion (67%) and a lower mean number of MPs (1.66 ± 0.1 MPs individual−1). Composition and size of particles differed significantly between the two species. The non-selective feeding strategy of N. norvegicus could explain the 3–5 folds higher numbers of MPs in its stomach, which were mostly composed of films and fragments derived by polyethylene and polypropylene single-use plastic items. Contrarily, most MPs in the stomachs of A. antennatus were polyester filaments. The MPs abundance observed in N. norvegicus is among the highest detected in Mediterranean species considering both fish and invertebrates species, and provides novel insights on MPs bioavailability in deep-sea habitats. The overall results suggest that both N. norvegicus and A. antennatus, easily available in common fishery markets, could be valuable bioindicators and flagship species for plastic contamination in the deep-sea.
Показать больше [+] Меньше [-]A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation Полный текст
2019
Chang, Ruihai | Sohi, Saran P. | Jing, Fanqi | Liu, Yuyan | Chen, Jiawei
Biochar has potential to control the bioavailability and migration of potentially toxic heavy metals in soil by adsorption. Natural ageing in the environment may change the physicochemical properties and adsorption function of biochar over the long-term. The present study compared the effects of different simulated ageing treatments on Cd adsorption of high and low temperature biochar from straw of corn (Zea mays). Fresh and aged biochars were systematically characterized by elemental analysis, FTIR, XPS, Zeta, SEM-EDS, XRD and the composition of their mineral ash. The adsorption of Cd to fresh and aged biochars was then assessed under the influence of pH. Drawing the results together the effects of ageing on the extent and mode of Cd adsorption could be elucidated. The results showed that the adsorption capacity of fresh biochar produced at 650 °C was higher than of biochar made at 350 °C, and that mineral co-precipitation plays a dominant role in Cd sorption. Leaching removed organic and inorganic ash components from biochars, markedly diminishing the capacity of the high temperature biochar to adsorb Cd. The adsorption performance of the low temperature biochar was dependent on surface complexation. The adsorption capacity of low-temperature biochar was markedly enhanced by oxygen-containing functional groups formed through acidification and oxidation. The long-term benefits of biochar in the management of polluted soil require a rethink, considering the contrasting ageing behavior of different temperature biochar and their response to different ageing environments.
Показать больше [+] Меньше [-]