Уточнить поиск
Результаты 1461-1470 из 6,548
Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar Полный текст
2020
Chen, Haoming | Tang, Lingyi | Wang, Zhijun | Su, Mu | Tian, Da | Zhang, Lin | Li, Zhen
Cadmium cations (Cd²⁺) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd²⁺ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd²⁺ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd²⁺ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd²⁺ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
Показать больше [+] Меньше [-]Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression Полный текст
2020
Yang, Qian | Yuan, Qiangqiang | Yue, Linwei | Li, Tongwen
PM₂.₅ pollution is caused by multiple factors and determining how these factors affect PM₂.₅ pollution is important for haze control. In this study, we modified the geographically weighted regression (GWR) model and investigated the relationships between PM₂.₅ and its influencing factors. Experiments covering 368 cities and 9 urban agglomerations were conducted in China in 2015 and more than 20 factors were considered. The modified GWR coefficients (MGCs) were calculated for six variables, including two emission factors (SO₂ and NO₂ concentrations), two meteorological factors (relative humidity and lifted index), and two topographical factors (woodland percentage and elevation). Then the spatial distribution of MGCs was analyzed at city, cluster, and region scales. Results showed that the relationships between PM₂.₅ and the different factors varied with location. SO₂ emission positively affected PM₂.₅, and the impact was the strongest in the Beijing–Tianjin–Hebei (BTH) region. The impact of NO₂ was generally smaller than that of SO₂ and could be important in coastal areas. The impact of meteorological factors on PM₂.₅ was complicated in terms of spatial variations, with relative humidity and lifted index exerting a strong positive impact on PM₂.₅ in Pearl River Delta and Central China, respectively. Woodland percentage mainly influenced PM₂.₅ in regions of or near deserts, and elevation was important in BTH and Sichuan. The findings of this study can improve our understanding of haze formation and provide useful information for policy-making.
Показать больше [+] Меньше [-]Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland Полный текст
2020
Kotowska, Urszula | Kapelewska, Justyna | Sawczuk, Róża
Phthalates or phthalic acid esters (PAEs) are chemical compounds whose use is exceptionally widespread in everyday materials but, at the same time, have been proven to have harmful effects on living organisms. Effluents from municipal wastewater treatment plants (WWTP) and leachates from municipal solid waste (MSW) landfills are important sources of phthalates with respect to naturally occurring waters. The main aim of this research was determination, mass loads, removal rates and ecological risk assessment of eight phthalates in municipal wastewaters, landfill leachates and groundwater from Polish WWTPs and MSW landfills. Solid-phase microextraction and gas chromatography with mass spectrometry were used for the extraction and determination of analytes. Summed up concentrations of eight phthalates ranged from below LOD to 596 μg/L in influent wastewater with the highest concentration found for bis-2-ethylhexyl phthalate (DEHP) (143 μg/L). The average degree of phthalate removal varies depending on the capacity of a given treatment plant with larger treatment plants coping better than smaller ones. The highest treatment efficiency for all tested treatment plants, over 90%, was reported for dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall concentrations of phthalates in leachates ranged from below LOD to 303 μg/L while the highest maximum concentration was registered for DEHP (249 μg/L). Overall concentrations of phthalic acid esters in groundwater from upstream monitoring wells ranged from below LOD to 1.8 μg/L and from LOD to 27.9 μg/L in samples from wells downstream of MSW landfills. The obtained data shows that diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), DEHP, and diisononyl phthalate (DINP) pose a high risk for all trophic levels being considered in effluent wastewaters. In the case of groundwater high environmental risk was recorded for DBP and DEHP for all tested trophic levels. Phthalates, in concentrations that pose a high environmental risk, are present in Polish municipal after-treatment wastewater as well as in groundwater under municipal solid waste landfills.
Показать больше [+] Меньше [-]Characterization and transcriptomic analysis of a highly Cr(VI)-resistant and -reductive plant-growth-promoting rhizobacterium Stenotrophomonas rhizophila DSM14405T Полный текст
2020
Gao, Jie | Wu, Shimin | Liu, Ying | Wu, Shanghua | Jiang, Cancan | Li, Xianglong | Wang, Rui | Bai, Zhihui | Zhuang, Guoqiang | Zhuang, Xuliang
Previous research has shown that Stenotrophomonas has the ability to reduce Cr(VI). In this study, we determined whether the reduction capacity of Cr(VI) is conserved in Stenotrophomonas rhizophila DSM14405ᵀ, a plant-growth-promoting rhizobacterium (PGPR). Our results show that S. rhizophila DSM14405ᵀ displays high Cr(VI) resistance at a minimal inhibitory concentration of 1000 mg/L. Furthermore, it completely reduced 50 mg/L Cr(VI) in 28 h at pH 7.5 at 30 °C. The results of X-ray photoelectron spectroscopy and high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry analysis confirmed the ability of S. rhizophila DSM14405ᵀ to convert Cr(VI) to Cr(III), and indicated the adsorption and intracellular accumulation of Cr(III). Transcriptomic analysis revealed that in the presence or absence of Cr(VI), transcriptomes upon short-term exposure showed more differentially expressed genes than those after long-term exposure. GO and KEGG analyses showed that most of the differentially expressed genes were related to Cr(VI) resistance, including genes related to iron homeostasis, central metabolism, DNA repair and anti-oxidative stress, and sulfur metabolism. Highly Cr(VI)-resistant and reductive abilities of this PGPR strain render it a suitable candidate for combined plant-microbe remediation of chromium contaminants from soil.
Показать больше [+] Меньше [-]Cadmium source identification in soils and high-risk regions predicted by geographical detector method Полный текст
2020
Zhao, Yinjun | Deng, Qiyu | Lin, Qing | Zeng, Changyu | Zhong, Cong
Cadmium (Cd) contamination in soils has become a serious and widespread environmental problem, especially in areas with high natural background Cd values, but the mechanism of Cd enrichment in these areas is still unclear. This study uses the Guangxi Zhuang Autonomous Region (Guangxi), a typical area with a high background Cd level and Cd pollution related to mining activities, as an example to explore the source and predict areas with high Cd risk in soils based on the geographical detector method. The areas with high Cd in Guangxi soils were classified into non-mining areas and mining areas according to their potential Cd sources. The results show that the rich Cd content in the soils from the non-mining area of Guangxi was mainly derived from the soil type (q = 0.34), geological age (q = 0.27), rock type (q = 0.26) and geomorphic type (q = 0.20). Specifically, the Cd content was derived from the weathering and deposition processes of carbonatite from the Carboniferous system in the karst area. The high Cd content in the soils of the mining area of Guangxi was mainly derived from the area mined for mineral resources (q = 0.08) and rock type (q = 0.05). Specifically, the Cd content was derived from the mining of lead-zinc ores. The areas in Guangxi with a high risk of Cd soil pollution are mostly concentrated in karst areas, such as Hechi, Laibin, Chongzuo, southern Liuzhou and Baise, northern Nanning city and northeastern Guilin city, and some mining areas. These results indicated that the high Cd concentration in the soils of large areas of Guangxi is probably due to natural sources, while the high Cd concentration around mining areas is due to anthropogenic sources. The results will be useful for soil restoration and locating and controlling contaminated agricultural land.
Показать больше [+] Меньше [-]Biotransformation of adsorbed arsenic on iron minerals by coexisting arsenate-reducing and arsenite-oxidizing bacteria Полный текст
2020
Ye, Li | Wang, Liying | Jing, Chuanyong
Bacteria with arsenate-reducing (ars) and arsenite-oxidizing (aio) genes usually co-exist in aerobic environments, but their contrast impacts on arsenic (As) speciation and mobility remain unclear. To identify which kind of bacteria dominate As speciation under oxic conditions, we studied the biotransformation of adsorbed As on goethite in the co-existence of Pantoea sp. IMH with ars gene and Achromobacter sp. SY8 with aio gene. The incubation results show that SY8 dominated the dissolved As speciation as As(V), even though aio exhibited nearly 5 folds lower transcription levels than ars in IMH. Nevertheless, our XANES results suggest that SY8 showed a negligible effect on solid-bound As speciation whereas IMH reduced adsorbed As(V) to As(III). The change in As speciation on goethite surfaces led to a partial As structural change from bidentate corner-sharing to monodentate corner-sharing as evidenced by our EXFAS analysis. Our Mössbauer spectroscopic results suggest that the incubation with SY8 reduced the degree of crystallinity of goethite, and the reduced crystallinity can be partly compensated by IMH. The changes in As adsorption structure and in goethite crystallinity had a negligible effect on As release. The insights gained from this study improve our understanding of biotransformation of As in aerobic environment.
Показать больше [+] Меньше [-]Effects of external Mn2+ activities on OsNRAMP5 expression level and Cd accumulation in indica rice Полный текст
2020
Cai, Yimin | Wang, Meie | Chen, Baodong | Chen, Weiping | Xu, Weibiao | Xie, Hongwei | Long, Qizhang | Cai, Yaohui
Manganese (Mn) transporter OsNRAMP5 was widely reported to regulate cadmium (Cd) uptake in rice. However, the relationship between OsNRAMP5 expression level and Cd accumulation, impacts of external ion activities on OsNRAMP5 expression level and Cd accumulation are still unclear. Investigations of the relationship between OsNRAMP5 expression level and Cd accumulation in three indica rice genotypes were conducted under various external Mn²⁺ activities ranging from Mn deficiency to toxicity in EGTA-buffered nutrient solution. Results in this work indicated that OsNRAMP5 expression level in roots significantly up-regulated at Mn phytotoxicity compared to that at Mn deficiency, which may stimulate by the increasing uptake of Mn. Our work also demonstrated that root Cd concentration of all the tested rice decreased notably when external Mn²⁺ activity reached the level of toxicity. This may explain by the increasing competition between the excess Mn²⁺ and Cd²⁺ as well as the disorder of element absorption caused by root damage at Mn toxicity. Our work also revealed that the relationship between OsNRAMP5 expression level in roots and Cd accumulation in roots was insignificant for all the tested genotypes. Besides, OsNRAMP5 expression level in roots seemed more related to root Mn accumulation. The fact that function of OsNRAMP5 mainly focuses on Mn uptake, together with the fact that many transporter genes involved in Cd uptake might result in the insignificant correlation between OsNRAMP5 expression level and Cd accumulation in roots. At last, multi-level regulating and processing of the process from gene expression to protein translation might account for the inconsistent relationship between root OsNRAMP5 expression level and Cd accumulation in roots.
Показать больше [+] Меньше [-]Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils Полный текст
2020
Feng, Jiayin | Shentu, Jue | Zhu, Yanjie | Tang, Caixian | He, Yan | Xu, Jianming
Plant-specific root-microbe-soil interactions play an indisputable role in microbial adaptation to environmental stresses. However, the assembly of plant rhizosphere microbiomes and their feedbacks in modification of pollution alleviation under organochlorine stress condition is far less clear. This study examined the response of root-associated bacterial microbiomes to lindane pollution and compared the dissipation of lindane in maize-cultivated dry soils and rice-cultivated flooded soils. Results showed that lindane pollution dramatically altered the microbial structure in the rhizosphere soil of maize but had less influence on the microbial composition in flooded treatments regardless of rice growth, when the reductive dechlorination of lindane was actively coupled with natural redox processes under anaerobic conditions. After 30 days of plant growth, lindane residues dissipated much faster in anaerobic than in aerobic environments, with only 1.08 mg kg⁻¹ lindane remaining in flooded control compared to 12.79 mg kg⁻¹ in dry control soils. Compared to the corresponding unplanted control, maize growth significantly increased, but rice growth slightly decreased the dissipation of lindane. Our study suggests that opposite impacts would lead to the self-purification of polluted soils during the growth of xerophytic maize and hygrocolous rice. This was attributed to the contrasting belowground micro-ecological processes regarding protection of root tissues and thereby assembly of rhizosphere microbiomes shaped by the xerophytic and hygrocolous crops under different water managements, in response to lindane pollution.
Показать больше [+] Меньше [-]Intraspecific interactions affect outcomes of pulse toxicity at different Daphnia magna population phases Полный текст
2020
Woo, Timothy J. | East, Andrew | Salice, Christopher J.
Traditional toxicity tests assess stressor effects on individuals, while protection goals are focused on the population-level and above. Additionally, these tests ignore common ecological factors such as resource levels and population growth phase. The objective of this research was to explore effects of – and interactions between – resource availability and stress response at the individual and population levels using Daphnia magna as a model. We hypothesized that density-dependent changes in resources at various phases of population growth would cause different population responses to the same toxicant stress. Laboratory populations of Daphnia magna were exposed to a 48-h pulse of 20 or 30 μg/l pyraclostrobin in one of four distinct phases of laboratory population cycles: growth, peak, decline, and stable. Population size and recovery were observed throughout the 51-day study. Populations exposed to pyraclostrobin during the growth phase had the least mortality and fastest recovery, while populations in the peak phase had the greatest mortality and slowest recovery. These data suggested that high density and low food at the peak phase resulted in more sensitive daphnids. To further test this hypothesis, a resource-amended acute toxicity study was conducted to quantify the effects of food resource on pyraclostrobin toxicity to Daphnia magna. Three age classes of Daphnia magna (neonate, subadult, adult) were fed low or high food levels and exposed to pyraclostrobin for 48 h. Toxicity was greater, as shown by lower 48 h LC50s, for smaller Daphnia magna age classes and lower food levels comporting results in the population study. Importantly, the acute toxicity studies generally yielded lower effect levels than the population studies suggesting that while the standard acute studies are ecologically unrealistic, they may be protective of toxicity under some circumstances. Collectively, these data point to the importance of population phase and the resource environment in modulating toxicity.
Показать больше [+] Меньше [-]Scenario-based pollution discharge simulations and mapping using integrated QUAL2K-GIS Полный текст
2020
Ahmad Kamal, Norashikin | Muhammad, Nur Shazwani | Abdullah, Jazuri
Malaysia is a tropical country that is highly dependent on surface water for its raw water supply. Unfortunately, surface water is vulnerable to pollution, especially in developed and dense urban catchments. Therefore, in this study, a methodology was developed for an extensive temporal water quality index (WQI) and classification analysis, simulations of various pollutant discharge scenarios using QUAL2K software, and maps with NH₃–N as the core pollutant using an integrated QUAL2K-GIS. It was found that most of the water quality stations are categorized as Class III (slightly polluted to polluted). These stations are surrounded by residential areas, industries, workshops, restaurants and wet markets that contribute to the poor water quality levels. Additionally, low WQI values were reported in 2010 owing to development and agricultural activities. However, the WQI values improved during the wet season. High concentrations of NH₃–N were found in the basin, especially during dry weather conditions. Three scenarios were simulated, i.e. 10%, 50% and 70% of pollution discharge into Skudai river using a calibrated and validated QUAL2K model. Model performance was evaluated using the relative percentage difference. An inclusive graph showing the current conditions and pollution reduction scenarios with respect to the distance of Skudai river and its tributaries is developed to determine the WQI classification. Comprehensive water quality maps based on NH₃–N as the core pollutant are developed using integrated QUAL2K-GIS to illustrate the overall condition of the Skudai river. High NH₃–N in the Skudai River affects water treatment plant operations. Pollution control of more than 90% is required to improve the water quality classification to Class II. The methodology and analysis developed in this study can assist various stakeholders and authorities in identifying problematic areas and determining the required percentage of pollution reduction to improve the Skudai River water quality.
Показать больше [+] Меньше [-]