Уточнить поиск
Результаты 1491-1500 из 1,953
Seasonal dynamics of harmful algae in outer Oslofjorden monitored by microarray, qPCR, and microscopy
2013
Dittami, Simon M. | Hostyeva, Vladyslava | Egge, Elianne Sirnæs | Kegel, Jessica U. | Eikrem, Wenche | Edvardsen, Bente
Monitoring of marine microalgae is important to predict and manage harmful algal blooms. Microarray Detection of Toxic ALgae (MIDTAL) is an FP7-funded EU project aiming to establish a multi-species microarray as a tool to aid monitoring agencies. We tested the suitability of different prototype versions of the MIDTAL microarray for the monthly monitoring of a sampling station in outer Oslofjorden during a 1-year period. Microarray data from two different versions of the MIDTAL chip were compared to results from cell counts (several species) and quantitative real-time PCR (qPCR; only Pseudochattonella spp.). While results from generation 2.5 microarrays exhibited a high number of false positive signals, generation 3.3 microarray data generally correlated with microscopy and qPCR data, with three important limitations: (1) Pseudo-nitzschia cells were not reliably detected, possibly because cells were not sufficiently retained during filtration or lysed during the extraction, and because of low sensitivity of the probes; (2) in the case of samples with high concentrations of non-target species, the sensitivity of the arrays was decreased; (3) one occurrence of Alexandrium pseudogonyaulax was not detected due to a 1-bp mismatch with the genus probe represented on the microarray. In spite of these shortcomings our data demonstrate the overall progress made and the potential of the MIDTAL array. The case of Pseudochattonella — where two morphologically similar species impossible to separate by light microscopy were distinguished — in particular, underlines the added value of molecular methods such as microarrays in routine phytoplankton monitoring.
Показать больше [+] Меньше [-]Lead accumulation and elimination in tissues of Prussian carp, Carassius gibelio (Bloch, 1782), after long-term dietary exposure, and depuration periods
2013
Łuszczek-Trojnar, Ewa | Drąg-Kozak, Ewa | Popek, Wlodzimierz
We studied the bioaccumulation of lead in selected tissues of Prussian carp Carassius gibelio (Bloch, 1782) during 12 and 24 months exposure to different doses of this metal in feed and the elimination of lead from tissues during the following 12-month depuration period. Lead concentration was determined using atomic absorption spectrometry method. The highest lead concentrations were observed at 2.0 ± 0.54 to 7.4 ± 1.1 mg kg⁻¹ in the kidney, 3.0 ± 0.13 to 5.2 ± 0.17 mg kg⁻¹ in the bone, and 4.5 (±0.4) mg kg⁻¹ in the hepatopancreas of fish from groups exposed to lead dietary concentration from 8 to 49 mg kg⁻¹ for 24 months. The rate of accumulation were generally the highest at the beginning of exposure as evidenced by the highest monthly increments of bioaccumulation observed after 3 months of contamination for muscles, hepatopancreatic gland, intestine, and gills. Also analysis of the monthly increments of lead bioaccumulation in bone tissue and the highly significant coefficients of correlation indicate that the dynamics of accumulation are clearly dependent on dose of exposure. Depuration of accumulated lead from the organs depended mainly on tissue and duration of elimination period. Very rapid depuration was observed in soft tissues such as the intestine or muscles. Very low elimination was observed for scales and bones where until the end of the experiment highly significant lead concentration differences were observed in all groups in relation to the control group. Chronic dietary exposure in the range of 8–49 mg Pb kg⁻¹ resulted in no significant effects on the growth and survival of Prussian carp females.
Показать больше [+] Меньше [-]The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent
2013
Pawlett, Mark | Ritz, K. (Karl) | Dorey, Robert A. | Rocks, Sophie | Ramsden, Jeremy | Harris, Jim A.
Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.
Показать больше [+] Меньше [-]Destruction of halogen-containing pesticides by means of detonation combustion
2013
Biegańska, Jolanta
Pesticides that contain a halogen functional group have been destructed by means of detonative combustion. The following compounds were examined: (1) atrazine—2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine—herbicide; (2) bromophos—O,4-bromo-2,5-dichlorophenyl O,O-dimethyl phosphorothioate—insecticide; (3) chloridazon—5-amino-4-chloro-2-phenylopyridazin-3(2H)-one—herbicide; (4) linuron—3-(3,4-dichlorophenyl)-1-metoxy-1-methylurea—herbicide; (5) metoxychlor—1,1,1-trichloro-2,2-bis(4-metoxyphenyl)ethane—insecticide and acaricide; and (6) trichlorfon—dimethyl 2,2,2-trichloro-1-hydroxyethylphosphonate—insecticide. Explosive material has been produced on the basis of ammonium nitrate, which served as an oxidizer while the pesticides were used as fuels. Composition of the explosive was adjusted in such a way as to respect thermodynamic parameters. Detonative decomposition of the mixtures has been carried out in shot-holes pre-drilled in soil. Efficiency of the pesticide decomposition has been examined with gas chromatography in order to determine pesticides residues in the environment. It was found that for some, the amount of pesticides in some compounds in the analyzed samples after decomposition was below the determination threshold of the applied method.
Показать больше [+] Меньше [-]Removal of hydrocarbon from refinery tank bottom sludge employing microbial culture
2013
Saikia, Rashmi Rekha | Deka, Suresh
Accumulation of oily sludge is becoming a serious environmental threat, and there has not been much work reported for the removal of hydrocarbon from refinery tank bottom sludge. Effort has been made in this study to investigate the removal of hydrocarbon from refinery sludge by isolated biosurfactant-producing Pseudomonas aeruginosa RS29 strain and explore the biosurfactant for its composition and stability. Laboratory investigation was carried out with this strain to observe its efficacy of removing hydrocarbon from refinery sludge employing whole bacterial culture and culture supernatant to various concentrations of sand-sludge mixture. Removal of hydrocarbon was recorded after 20 days. Analysis of the produced biosurfactant was carried out to get the idea about its stability and composition. The strain could remove up to 85 ± 3 and 55 ± 4.5 % of hydrocarbon from refinery sludge when whole bacterial culture and culture supernatant were used, respectively. Maximum surface tension reduction (26.3 mN m(-1)) was achieved with the strain in just 24 h of time. Emulsification index (E24) was recorded as 100 and 80 % with crude oil and n-hexadecane, respectively. The biosurfactant was confirmed as rhamnolipid containing C8 and C10 fatty acid components and having more mono-rhamnolipid congeners than the di-rhamnolipid ones. The biosurfactant was stable up to 121 °C, pH 2-10, and up to a salinity value of 2-10 % w/v. To our knowledge, this is the first report showing the potentiality of a native strain from the northeast region of India for the efficient removal of hydrocarbon from refinery sludge.
Показать больше [+] Меньше [-]Removal of copper from water by electrocoagulation process—effect of alternating current (AC) and direct current (DC)
2013
Kamaraj, Ramakrishnan | Ganesan, Pandian | Lakshmi, Jothinathan | Vasudevan, Subramanyan
PURPOSE AND AIM: In general, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of copper from water using magnesium alloy as anode and cathode. MATERIALS AND METHODS: Magnesium alloy of size 2.0 dm² was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. Copper adsorbed magnesium hydroxide coagulant was characterized by SEM, EDAX, XRD, and FTIR. RESULTS: The results showed that the optimum removal efficiency of copper is 97.8 and 97.2 % with an energy consumption of 0.634 and 0.996 kWh/m³ at a current density of 0.025 A/dm², pH of 7.0 for AC and DC, respectively. The adsorption of copper is preferably fitting the Langmuir adsorption isotherm for both AC and DC respectively. The adsorption process follows the second-order kinetics model with good correlation. Temperature studies showed that adsorption was endothermic and spontaneous in nature. CONCLUSIONS: The magnesium hydroxide generated in the cell removes the copper present in the water, reducing the copper concentration to less than 1 mg/L, making it safe for drinking. The results of the scale-up study show that the process was technologically feasible.
Показать больше [+] Меньше [-]Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach
2013
Lim, Chi Kim | Bay, Hui Han | Aris, Azmi | Abdul Majid, Zaiton | Ibrahim, Zaharah
Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV–Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1 % w/v, glycerol concentration of 0.1 % v/v, and inoculum density of 2.5 % v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98 % was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV–Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
Показать больше [+] Меньше [-]Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic
2013
Žibret, Gorazd | Van Tonder, Danel | Žibret, Lea
Resuspended street dust is a source of inhalable particles in urban environments. Despite contaminated street dust being a possible health risk factor for local population, little is known about the contribution of atmospheric dust emissions and other factors to the content of toxic metals in street dust. The impact of smelting, traffic, and power plants on metal contaminates in street dust is the focus of street dust sampling at 46 locations in the Witbank area (Republic of South Africa). This area is characterized by numerous open-pit coal mines in the Karoo coal basin, which provides a cheap source of energy to numerous metallurgical smelters and ironworks and supplies coal to the coal-fired power plants located nearby. Street dust was collected on asphalt or concrete surfaces with hard plastic brushes, avoiding collecting of possible sand, soil, or plant particles. Chemical analysis was done on the <0.125 mm fraction using inductively coupled plasma mass spectrometry subsequent to total digestion. Exceptionally high concentrations of metals were detected with concentrations of Fe reaching 17.7 %, Cr 4.3 %, Mn 2 %, Ni 366 mg/kg, and V 4,410 mg/kg. Factor analysis indicates three sources for the pollution. Road traffic which contributes to the high concentrations of Cu, Pb, Sb, and Sn, with the highest impacts detected in the town of Witbank. The second source is associated with the metal smelting industry, contributing to Fe, Co, Mn, and V emissions. The highest factor scores were observed around four metallurgical smelter operations, located in the Ferrobank, Highveld, and Clewer industrial areas. Impact of vanadium smelter to street dust composition could still be detected some 20 km away from the sources. Exceptionally high concentrations of Cr were observed in four samples collected next to the Ferrobank industrial area, despite Cr not being loaded in factor 2. The last source of the pollution is most probably fly ash associated with the coal-fired power plants and fly ash dumps. Elements which are associated with this source are Al, Sr, and Li. This factor is abundant in the coal mining part of the study area.
Показать больше [+] Меньше [-]Longitudinal variations in indoor VOC concentrations after moving into new apartments and indoor source characterization
2013
Shin, Seung-Ho | Jo, Wan-Kuen
This study examined the indoor concentrations of a wide range of volatile organic compounds (VOCs) in currently built new apartments every month over a 24-month period and the source characteristics of indoor VOCs. The indoor total VOC (TVOC) concentrations exhibited a decreasing tendency over the 24-month follow-up period. Similar to TVOCs, the median indoor concentrations of 33 of 40 individual VOCs (all except for naphthalene and six halogenated VOCs) revealed decreasing tendencies. In contrast, the indoor concentrations of the six halogenated VOCs did not reveal any definite trend with time. Moreover, the indoor concentrations of those halogenated VOCs were similar to the outdoor concentrations, suggesting the absence of any notable indoor sources of halogenated VOCs. For naphthalene (NT), the indoor concentrations were significantly higher than the outdoor concentrations, suggesting the presence of indoor NT source(s). The floor/wall coverings (39 %) were the most influential indoor source of indoor VOCs, followed by household cleaning products (32 %), wood paneling/furniture (17 %), paints (7 %), and moth repellents (5 %).
Показать больше [+] Меньше [-]Prospects in straw disintegration for biogas production
2013
Maroušek, Josef
The pretreatment methods for enhancing biogas production from oat straw under study include hot maceration, steam explosion, and pressure shockwaves. The micropore area (9, 55, and 64 m(2) g(-1)) inhibitor formations (0, 15, and 0 mL L(-1)) as well as the overall methane yields (67, 179, and 255 CH4 VS t(-1)) were robustly analyzed. It was confirmed that the operating conditions of the steam explosion must be precisely tailored to the substrate. Furthermore, it was beneficial to prepend the hot maceration before the steam explosion and the pressure shockwaves. The second alternative may give increased methane yields (246 in comparison to 273 CH4 VS t(-1)); however, the application of pressure shockwaves still faces limitations for deployment on a commercial scale.
Показать больше [+] Меньше [-]