Уточнить поиск
Результаты 151-160 из 4,086
Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics Полный текст
2016
Rizwan, M. | Meunier, Jean-Dominique | Davidian, J. -C. | Pokrovsky, O. S. | Bovet, N. | Keller, Catherine | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Department of Environmental Sciences [Faisalabad] ; Government College University of Faisalabad (GCUF) | Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS) | National Research Tomsk State University [Tomsk] (TSU) | NanoGeoScience ; University of Copenhagenn
Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics Полный текст
2016
Rizwan, M. | Meunier, Jean-Dominique | Davidian, J. -C. | Pokrovsky, O. S. | Bovet, N. | Keller, Catherine | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Department of Environmental Sciences [Faisalabad] ; Government College University of Faisalabad (GCUF) | Biochimie et Physiologie Moléculaire des Plantes (BPMP) ; Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Communauté d'universités et établissements de Toulouse (Comue de Toulouse)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS) | National Research Tomsk State University [Tomsk] (TSU) | NanoGeoScience ; University of Copenhagenn
International audience | We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 mu M). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 mu M Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.
Показать больше [+] Меньше [-]Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics Полный текст
2016
Rizwan, M. | Meunier, J.-D. | Davidian, J.-C. | Pokrovsky, O. S. | Bovet, N. | Keller, C.
We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root–shoot translocation.
Показать больше [+] Меньше [-]In situ visualization and quantitative investigation of the distribution of polycyclic aromatic hydrocarbons in the micro-zones of mangrove sediment Полный текст
2016
Li, Ruilong | Zhu, Yaxian | Zhang, Yong
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the micro-zones of mangrove sediment is a predominant factors determining PAH bioavailability. In this study, a novel method for the in situ visualization (via microscope) and quantitative investigation of the PAH distribution in the micro-zones of mangrove sediment was established using microscopic fluorescence spectral analysis combined with derivative synchronous fluorescence spectroscopy (MFSA-DSFS). The MFSA-DSFS method significantly suppressed the background fluorescence signal of the sediment (the S/N values increased by over two orders of magnitude). The proportion of the nonpolar organic carbon content in the particulate organic matter (POM) rather than its content in the total organic matter (TOM) showed a significantly positive correlation with the uneven PAH distribution (Relative DC-M values) evaluated using the established method (p < 0.05). The extent of the uneven PAH distribution in the micro-zones of aged sediment was higher than that in the spiked sediment. Moreover, the distribution pattern of the PAHs within the mangrove sediment changed to become more homogeneous in the presence of low-molecular-weight organic acids (LMWOAs), which primarily contribute to increasing the POM content.
Показать больше [+] Меньше [-]Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides Полный текст
2016
Zou, Yidong | Wang, Xiangxue | Chen, Zhongshan | Yao, Wen | Ai, Yuejie | Liu, Yunhai | Hayat, Tasawar | Alsaedi, Ahmed | Alharbi, Njud S. | Wang, Xiangke
With the development and application of graphene oxides (GO), the potential toxicity and environmental behavior of GO has become one of the most forefront environmental problems. Herein, a novel nanoscale layered double hydroxides (glycerinum-modified nanocrystallined Mg/Al layered double hydroxides, LDH-Gl), layered double oxides (calcined LDH-Gl, LDO-Gl) and metallic oxide (TiO2) were synthesized and applied as superior coagulants for the efficient removal of GO from aqueous solutions. Coagulation of GO as a function of coagulant contents, pH, ionic strength, GO contents, temperature and co-existing ions were studied and compared, and the results showed that the maximum coagulation capacities of GO were LDO-Gl (448.3 mg g−1) > TiO2 (365.7 mg g−1) > LDH-Gl (339.1 mg g−1) at pH 5.5, which were significantly higher than those of bentonite, Al2O3, CaCl2 or other natural materials due to their stronger reaction active and interfacial effect. The presence of SO32− and HCO3− inhibited the coagulation of GO on LDH-Gl and LDO-Gl significantly, while other cations (K+, Mg2+, Ca2+, Ni2+, Al3+) or anion (Cl−) had slightly effect on GO coagulation. The interaction mechanism of GO coagulation on LDO-Gl and TiO2 might due to the electrostatic interactions and strong surface complexation, while the main driving force of GO coagulation on LDH-Gl might be attributed to electrostatic interaction and hydrogen bond, which were further evidenced by TEM, SEM, FT-IR and XRD analysis. The results of natural environmental simulation showed that LDO-Gl, TiO2 or other kinds of natural metallic oxides could be superior coagulants for the efficient elimination of GO or other toxic nanomaterials from aqueous solutions in real environmental pollution cleanup.
Показать больше [+] Меньше [-]In-situ characterization and assessment of arsenic mobility in lake sediments Полный текст
2016
Sun, Qin | Ding, Shiming | Wang, Yan | Xu, Lv | Wang, Dan | Chen, Jing | Zhang, Chaosheng
In-situ characterization and assessment of arsenic (As) mobility in sediments was scarce. In this study, the distributions of labile As at a vertical resolution of 2 mm were obtained in the sediments of a large Lake Taihu through in-situ measurements using a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The DGT-labile As, interpreted as DGT flux (FDGT), exhibited three different patterns in the lake, with all the patterns generally showing an increasing mobility followed by a decreasing mobility with sediment depth. The mobility of As could be characterized by the average FDGT (0.06–1.27 pg cm−2 s−1) in the top 10 mm surface sediments, the maximal FDGT (FDGT-M, 0.14–2.44 pg cm−2 s−1) in the end of the initial increasing phase of FDGT, and the diffusion length (ΔL, 28–66 mm) from the depth showing the FDGT-M to the sediment-water interface. The upward mobilization of labile As from the deep sediments to the surface sediments and overlying water became evident when FDGT-M > 1.7 pg cm−2 s−1 or ΔL < 41 mm. The results, for the first time, showed a prospect in in-situ risk assessment of the pollution of sediment As. It was suggested that the increasing mobility of As in the upper sediments was controlled by the reduction of As(V) and the reductive dissolution of Fe(III) (hydr)oxides, while the decreasing mobility in the deep sediments was attributed to immobilization of As(III) by secondary Fe(II)-bearing minerals.
Показать больше [+] Меньше [-]A critical review of engineered nanomaterial release data: Are current data useful for material flow modeling? Полный текст
2016
Caballero-Guzman, Alejandro | Nowack, Bernd
Material flow analysis (MFA) is a useful tool to predict the flows of engineered nanomaterials (ENM) to the environment. The quantification of release factors is a crucial part of MFA modeling. In the last years an increasing amount of literature on release of ENM from materials and products has been published. The purpose of this review is to analyze the strategies implemented by MFA models to include these release data, in particular to derive transfer coefficients (TC). Our scope was focused on those articles that analyzed the release from applications readily available in the market in settings that resemble average use conditions. Current MFA studies rely to a large extent on extrapolations, authors’ assumptions, expert opinions and other informal sources of data to parameterize the models. We were able to qualitatively assess the following aspects of the release literature: (i) the initial characterization of ENM provided, (ii) quantitative information on the mass of ENM released and its characterization, (iii) description of transformation reactions and (iv) assessment of the factors determining release. Although the literature on ENM release is growing, coverage of exposure scenarios is still limited; only 20% of the ENMs used industrially and 36% of the product categories involved have been investigated in release studies and only few relevant release scenarios have been described. Furthermore, the information provided is rather incomplete concerning descriptions and characterizations of ENMs and the released materials. Our results show that both the development of methods to define the TCs and of protocols to enhance assessment of ENM release from nano-applications will contribute to increase the exploitability of the data provided for MFA models. The suggestions we provide in this article will likely contribute to an improved exposure modeling by providing ENM release estimates closer to reality.
Показать больше [+] Меньше [-]Kinetics of nutrient enhanced crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2 isolated from Guwahati refinery, India Полный текст
2016
Chettri, Bobby | Mukherjee, Arghya | Langpoklakpam, James S. | Chattopadhyay, Dhrubajyoti | Singh, Arvind K.
Bacterial degradation of crude oil in response to nutrient treatments has been vastly studied. But there is a paucity of information on kinetic parameters of crude oil degradation. Here we report the nutrient stimulated kinetic parameters of crude oil degradation assessed in terms of CO2 production and oil removal by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2. The hydrocarbon degradation rate of P. aeruginosa AKS1 in oil only amended sediment was 10.75 ± 0.65 μg CO2-C g−1 sediment day−1 which was similar to degradation rate in sediments with no oil. In presence of both inorganic N & P, the degradation rate increased to 47.22 ± 1.32 μg CO2-C g−1 sediment day−1. The half-saturation constant (Ks) and maximum degradation rate (Vmax) for P. aeruginosa AKS1 under increasing N and saturating P concentration were 13.57 ± 0.53 μg N g−1 sediment and 39.36 ± 1.42 μg CO2-C g−1 sediment day−1 respectively. The corresponding values at increasing P and a constant N concentration were 1.60 ± 0.13 μg P g−1 sediment and 43.90 ± 1.03 μg CO2-C g−1 sediment day−1 respectively. Similarly the degradation rate of Bacillus sp. AKS2 in sediments amended with both inorganic nutrients N & P was seven fold higher than the rates in oil only or nutrient only treated sediments. The Ks and Vmax estimates of Bacillus sp. AKS2 under increasing N and saturating P concentration were 9.96 ± 1.25 μg N g−1 sediment and 59.96 ± 7.56 μg CO2-C g−1 sediment day−1 respectively. The corresponding values for P at saturating N concentration were 0.46 ± 0.24 μg P g−1 sediment and 63.63 ± 3.54 μg CO2-C g−1 sediment day−1 respectively. The rates of CO2 production by both isolates were further stimulated when oil concentration was increased above 12.5 mg g−1 sediment. However, oil degradation activity declined at oil concentration above 40 mg g−1 sediment when treated with constant nutrient: oil ratio. Both isolates exhibited alkane hydroxylase activity but aromatic degrading catechol 1, 2-dioxygenase and catechol 2, 3-dioxygenase activities were shown by P. aeruginosa AKS1 only.
Показать больше [+] Меньше [-]Temporal dynamics of microcystins in Limnodrilus hoffmeisteri, a dominant oligochaete of hypereutrophic Lake Taihu, China Полный текст
2016
Xue, Qingju | Steinman, Alan D. | Su, Xiaomei | Zhao, Yanyan | Xie, Liqiang
We examined the bioaccumulation of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) in the oligochaete Limnodrilus hoffmeisteri from July 2013 through June 2014 in Lake Taihu, China. Environmental parameters and MCs in sediment, phytoplankton and water column also were examined. L. hoffmeisteri accumulated extremely high MC concentrations during the warmest months, with a maximum value of 11.99 μg/g (MC-LR: 1.76 μg/g, MC-RR: 2.51 μg/g, and MC-YR: 7.73 μg/g). Total MC concentrations in L. hoffmeisteri declined after October (2013) and began to increase in May (2014). Between July and October, MC-YR concentration was higher than MC-LR and MC-RR. MC concentrations in L. hoffmeisteri were positively correlated with pH, water temperature, conductivity, chlorophyll a, nitrite and the biomass of Microcystis, and negatively correlated with dissolved oxygen (DO), nitrate, total nitrogen (TN), dissolved total inorganic carbon and the biomass of Bacillariophyta. In addition, MCs in phytoplankton were more strongly correlated with MCs in L. hoffmeisteri than in the water column or sediment. Our results demonstrated that L. hoffmeisteri could accumulate high MC concentrations in the bloom season, which might transfer to the edible zoobenthos and fish through trophic transfer, thereby posing a significant health threat to humans.
Показать больше [+] Меньше [-]Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L.): A field study Полный текст
2016
Zhang, Youchi | Chen, Tingting | Liao, Yongkai | Reid, Brian J. | Chi, Haifeng | Hou, Yanwei | Cai, Chao
Much research has considered the influence of biochars on the availability and phytoaccumulation of potentially toxic elements (PTEs) from soil. However, the vast majority of these studies use, what are arguably, unrealistic and unpractical amounts of biochar (10, 50 and even up to 100 t/ha). To offer a more realistic insight into the influence of biochar on PTE partitioning and phytoaccumulation, a field study, using modest rates of biochar application (1.5, 3.0 t/ha), was undertaken. Specifically, the research investigated the influence of sewage sludge biochar (SSBC) on the accumulation of Cd into rice (Oryza sativa L.) grown in Cd contaminated (0.82 ± 0.07 mg/kg) paddy soil. Results indicated, Cd concentrations in rice grains to significantly (p < 0.05) decrease from 1.35 ± 0.09 mg/kg in the control to 0.82 ± 0.07 mg/kg and 0.80 ± 0.21 mg/kg in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Accordingly, the hazardous quotient (HQ) indices for Cd, associated with rice grain consumption, were also reduced by ∼40%. SSBC amendment significantly (p < 0.05) increased grain yields from 1.90 ± 0.08 g/plant in the control to 2.17 ± 0.30 g/plant and 3.40 ± 0.27 g/plant in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Thus, the amendment of SSBC to contaminated paddy soils, even at low application rates, could be an effective approach to mitigate Cd accumulation into rice plants, to improve rice grain yields, and to thereby improve food security and protect public health.
Показать больше [+] Меньше [-]Serum POP concentrations are highly predictive of inner blubber concentrations at two extremes of body condition in northern elephant seals Полный текст
2016
Peterson, Michael G. | Peterson, Sarah H. | Debier, Cathy | Covaci, Adrian | Dirtu, Alin C. | Malarvannan, Govindan | Crocker, Daniel E. | Costa, Daniel P.
Long-lived, upper trophic level marine mammals are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Internal tissues may accumulate and mobilize POP compounds at different rates related to the body condition of the animal and the chemical characteristics of individual POP compounds; however, collection of samples from multiple tissues is a major challenge to ecotoxicology studies of free-ranging marine mammals and the ability to predict POP concentrations in one tissue from another tissue remains rare. Northern elephant seals (Mirounga angustirostris) forage on mesopelagic fish and squid for months at a time in the northeastern Pacific Ocean, interspersed with two periods of fasting on land, which results in dramatic seasonal fluctuations in body condition. Using northern elephant seals, we examined commonly studied tissues in mammalian toxicology to describe relationships and determine predictive equations among tissues for a suite of POP compounds, including ΣDDTs, ΣPCBs, Σchlordanes, and ΣPBDEs. We collected paired blubber (inner and outer) and blood serum samples from adult female and male seals in 2012 and 2013 at Año Nuevo State Reserve (California, USA). For females (N = 24), we sampled the same seals before (late in molting fast) and after (early in breeding fast) their approximately seven month foraging trip. For males, we sampled different seals before (N = 14) and after (N = 15) their approximately four month foraging trip. We observed strong relationships among tissues for many, but not all compounds. Serum POP concentrations were strong predictors of inner blubber POP concentrations for both females and males, while serum was a more consistent predictor of outer blubber for males than females. The ability to estimate POP blubber concentrations from serum, or vice versa, has the potential to enhance toxicological assessment and physiological modeling. Furthermore, predictive equations may illuminate commonalities or distinctions in bioaccumulation across marine mammal species.
Показать больше [+] Меньше [-]Native Prussian carp (Carassius gibelio) health status, biochemical and histological responses to treated wastewaters Полный текст
2016
Topić Popović, Natalija | Strunjak-Perović, Ivančica | Barišić, Josip | Kepec, Slavko | Jadan, Margita | Beer-Ljubić, Blanka | Matijatko, Vesna | Palić, Dušan | Klobučar, Goran | Babić, Sanja | Gajdoš Kljusurić, Jasenka | Čož-Rakovac, Rozelindra
The aim of this study was to assess the impact of treated wastewaters on native wild Prussian carp inhabiting effluent-receiving waters (ERC) receiving municipal and sugar plant treated wastewaters, further downstream waters (DW), and a detached canal unaffected by the WWTP activities. To that end, general fish health status was determined, including plasma biochemical, haematological, oxidative stress and tissue histopathological indices, over three seasons. The greatest tissue alterations were in fall in ERC during sugar beet processing, as hypertrophy of gill epithelial and interlamellar cells, necrosis and lymphocytic infiltration, hyperplasia and hypertrophy of renal tubules, distention of hepatic sinusoids. In fall the lowest leukocytes, lymphocytes and granulocytes (2467 ± 565, 1333 ± 264, 1133 ± 488 cells/μL respectively), as well as highest plasma ALP (52.7 ± 19.39 U/L) were measured. ERC in fall had the highest ammonium (20 mg/L), nitrite (1.48 mg/L), nitrate (13.4 mg/L), and lowest dissolved O2 (1.23 mg/L). Gill, kidney and liver alterations, and the highest plasma cholesterol (9.1 ± 1.98 mmol/L) were noted in DW fish in fall. Tissue morphology during sugar cane processing seems a consequence of cellular and structural tissue integrity loss. Structural heterogeneity of gills and spleen was enhanced with increasing concentrations of heavy metals and correlated with oxidative stress (SOD 392.5 ± 77.28 U/L). Monogenean infestation was moderate in ERC fish in all seasons compared with DW fish. Prussian carp biological responses to multiple stressors, measured by the effects of WWTP on blood and tissue parameters, reached far downstream and were not of localized nature. This study demonstrated that in aquatic environments impacted with complex contaminants acting synergistically, causal relationships between biological responses and environmental stressors should be interpreted. Integrated histopathological, haematological and biochemical findings are valuable biomarkers for native fish adaptive patterns and monitoring of water quality/pollution of freshwater ecosystems.
Показать больше [+] Меньше [-]