Уточнить поиск
Результаты 1501-1510 из 2,512
New type of liquid rubber and compositions based on it Полный текст
2014
Semikolenov, S. V. | Nartova, A. V. | Voronchikhin, V. D. | Dubkov, K. A.
The new method for producing the functionalized polymers and oligomers containing carbonyl C=O groups is developed. The method is based on the noncatalytic oxidation of unsaturated rubbers by nitrous oxide (N₂O) at 180–230 °С. The proposed method allows obtaining the new type of functionalized rubbers—liquid unsaturated polyketones with regulated molecular weight and concentration of C=O groups. The influence of the liquid polyketone addition on properties of rubber-based composites is investigated. The study indicates good prospects of using the liquid polyketones for the improvement of properties and operating characteristics of the various types of rubbers and the rubber–cord systems.
Показать больше [+] Меньше [-]Removal and mechanism of Cu (II) and Cd (II) from aqueous single-metal solutions by a novel biosorbent from waste-activated sludge Полный текст
2014
Zhang, Zhiqiang | Wang, Pan | Zhang, Jiao | Xia, Siqing
The removal and mechanism of Cu²⁺and Cd²⁺from aqueous single-metal solutions were investigated by using a novel biosorbent from waste-activated sludge. A series of adsorption experiments was designed to disclose the effects of the key factors on the adsorption capacity of the biosorbent for the metal ions. The mass ratio of the biosorbent to metal ion was optimized as 2 to balance the adsorption capacity and the removal efficiency. A right shaking speed (150 r/min) not only ensured enough contact frequency between the sorbent and the adsorbate but also reduced the mass transfer resistance. The natural pH value (about 5.5) of the metal solutions benefited a high adsorption capacity of the biosorbent and avoided the consumption of acid or base for pH adjustment. The adsorption reactions belonged to the endothermic process between 15 and 45 °C. As the scanning electron microscopy (SEM) images showed, the meshy structure with long chains and many branches was ideal for the biosorbent to quickly capture the metal ions. The energy-dispersive X-ray (EDX) spectra confirmed that the adsorbed metal ions lay in the precipitates of the adsorption reactions. According to the FTIR analyses, the functional groups responsible for Cu²⁺adsorption majorly consisted of O–H, N–H, COOH, CONH₂, and the groups containing sulfur and phosphorus, while those for Cd²⁺adsorption contained O–H, N–H, COOH, and CONH₂. The differences in the responsible functional groups explained the phenomenon that the adsorption capacity of the biosorbent for Cu²⁺was higher than that for Cd²⁺.
Показать больше [+] Меньше [-]Assessment of 222Rn emanation from ore body and backfill tailings in low-grade underground uranium mine Полный текст
2014
Mishra, Devi Prasad | Sahu, Patitapaban | Panigrahi, Durga Charan | Jha, Vivekanand | Patnaik, R Lokeswara
This paper presents a comparative study of²²²Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity,²²⁶Ra and moisture contents on²²²Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10⁻³and 1.03 Bq m⁻² s⁻¹, respectively. Significant positive linear correlations between²²²Rn emanation rate and the²²⁶Ra content of ore and tailings were observed. For normalised²²⁶Ra content, the²²²Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the²²⁶Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.
Показать больше [+] Меньше [-]Analysis of ZVI corrosion products and their functions in the combined ZVI and anaerobic sludge system Полный текст
2014
Zhu, Liang | Gao, Kaituo | Jin, Jie | Lin, Haizhuan | Xu, Xiangyang
The zero-valent iron (ZVI) corrosion products and their functions were investigated in the combined ZVI and anaerobic sludge system. Results showed that ZVI corrosion occurred, and the reductive transformation and dechlorination of p-chloronitrobenzene (p-ClNB) by the anaerobic sludge were enhanced. In the combined systems with different types of ZVIs and mass ratios of anaerobic sludge to ZVI, a considerable amount of suspended iron compounds was produced and coated onto the microbial cells. However, the microbial cellular structure was damaged, and the p-ClNB reductive transformation was affected adversely after the long-term presence of nanoscale ZVI (NZVI) or reduced ZVI (RZVI) with a high concentration of 5 g L⁻¹. The oxidized products of FeOOH and Fe₃O₄were found on the surface of ZVI, which are speculated to act as electron mediators and consequently facilitate the utilization of electron donors by the anaerobic microbes.
Показать больше [+] Меньше [-]Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications Полный текст
2014
Chauhan, Divya | Dwivedi, Jaya | Sankararamakrishnan, Nalini
Enhanced removal application of both forms of inorganic arsenic from arsenic-contaminated aquifers at near-neutral pH was studied using a novel electrospun chitosan/PVA/zerovalent iron (CPZ) nanofibrous mat. CPZ was carefully examined using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), atomic fluorescence spectroscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Application of the adsorbent towards the removal of total inorganic arsenic in batch mode has also been studied. A suitable mechanism for the adsorption has also been discussed. CPZ nanofibers mat was found capable to remove 200.0 ± 10.0 mg g⁻¹of As(V) and 142.9 ± 7.2 mg g⁻¹of As(III) from aqueous solution of pH 7.0 at ambient condition. Addition of ethylenediaminetetraacetic acid (EDTA) enabled the stability of iron in zerovalent state (ZVI). Enhanced capacity of the fibrous mat could be attributed to the high surface area of the fibers, presence of ZVI, and presence of functional groups such as amino, carboxyl, and hydroxyl groups of the chitosan and EDTA. Both Langmuir and Freundlich adsorption isotherms were applicable to describe the removal process. The possible mechanism of adsorption has been explained in terms of electrostatic attraction between the protonated amino groups of chitosan/arsenate ions and oxidation of arsenite to arsenate by Fentons generated from ZVI and subsequent complexation of the arsenate with the oxidized iron. These CPZ nanofibrous mats has been prepared with environmentally benign naturally occurring biodegradable biopolymer chitosan, which offers unique advantage in the removal of arsenic from contaminated groundwater.
Показать больше [+] Меньше [-]Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles Полный текст
2014
Chen, Xi | Yao, Xiaoyan | Yu, Chunna | Su, Xiaomei | Shen, Chaofeng | Chen, Chen | Huang, Ronglang | Xu, Xinhua
Soil pollution by polychlorinated biphenyls (PCBs) arising from the crude disposal and recycling of electronic and electrical waste (e-waste) is a serious issue, and effective remediation technologies are urgently needed. Nanoscale zerovalent iron (nZVI) and bimetallic systems have been shown to promote successfully the destruction of halogenated organic compounds. In the present study, nZVI and Pd/Fe bimetallic nanoparticles synthesized by chemical deposition were used to remove 2,2′,4,4′,5,5′-hexachlorobiphenyl from deionized water, and then applied to PCBs contaminated soil collected from an e-waste recycling area. The results indicated that the hydrodechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by nZVI and Pd/Fe bimetallic nanoparticles followed pseudo-first-order kinetics and Pd loading was beneficial to the hydrodechlorination process. It was also found that the removal efficiencies of PCBs from soil achieved using Pd/Fe bimetallic nanoparticles were higher than that achieved using nZVI and that PCBs degradation might be affected by the soil properties. Finally, the potential challenges of nZVI application to in situ remediation were explored.
Показать больше [+] Меньше [-]Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L Полный текст
2014
Sundaravadivelan, Chandran | Padmanabhan, Madanagopal Nalini
Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I–IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10–20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and 100 % for third, fourth instars, and pupa. Lethal concentration 50 values of 0.079, 0.084, 0.087, 0.068, and 0.026 % were recorded for I–IV instars and pupa, respectively, when exposed to Ag NPs at 0.25 % concentration. Toxicity was exhibited against first (1.076 %), second (0.912 %), third (0.770 %), fourth (0.914 %) instars larvae, and pupa (0.387 %) with extracellular filtrate at a concentration of 1 % that was three- to fourfold higher compared to Ag NPs; no mortality was observed in the control. The present study is the first report on effective larvicidal and pupicidal activity of Ag NPs synthesized from an entomopathogenic fungi T. harzianum extracellular filtrate and could be an ideal ecofriendly, single-step, and inexpensive approach for the control of A. aegypti.
Показать больше [+] Меньше [-]Characterization of polychlorinated biphenyls, pentachlorobenzene, hexachlorobenzene, polychlorinated dibenzo-p-dioxins, and dibenzofurans in surface sediments of Muroran Port, Japan Полный текст
2014
Anezaki, Katsunori | Nagahora, Shinichiro
We determined the distribution of polychlorinated biphenyls (PCBs), pentachlorobenzene (PeCBz), hexachlorobenzene (HxCBz), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in surface sediments at 21 sites inside and outside Muroran Port, Japan. The concentration ranges and geometric means of PCBs (Σ209PCB), PeCBz, HxCBz, and PCDD/Fs and toxicity equivalence quantity (total TEQ) of dioxins inside Muroran Port were 1,100–65,000 (mean, 17,000) pg/g dw, 37–220 (100) pg/g dw, 31–810 (84) pg/g dw, 69–410 (170) pg/g dw, and 0.51–6.2 (2.3) pg TEQ/g dw, respectively. Their corresponding inventories inside Muroran Port were estimated to be 76, 0.31, 0.32, 0.55, and 7.8 g TEQ, respectively. The amounts of these pollutants were higher inside the port than outside the port and especially large in the inner part of the port. Most PCBs were homologues and congeners of penta- to hepta-chlorinated compounds, and the PCBs around Muroran Port were derived from technical PCBs, especially KC500 and KC600. As for PCDD/Fs, the influence of pentachlorophenol was significant, although pollution due to chloronitrofen and combustion was detected. The congeners of PCDD/Fs predominantly contributed to total TEQ. The concentration distributions of PeCBz, HxCBz, and PCDD/Fs and total TEQ were highly correlated with one another. This indicates that they are derived from the same combustion process.
Показать больше [+] Меньше [-]Study of different Chemcatcher configurations in the monitoring of nonylphenol ethoxylates and nonylphenol in aquatic environment Полный текст
2014
Ahkola, Heidi | Herve, Sirpa | Knuutinen, Juha
The main aim of the European Union Water Framework Directive (WFD) (2000/60/EC) is to protect rivers, lakes, coastal waters and groundwaters (EC 2000). The implementation of the WFD requires monitoring the concentration levels of several priority pollutants such as nonylphenol ethoxylates (NPEOs) and nonylphenol (NP) in the area of EU. The present practices for determining the concentration levels of various pollutants are, in many respects, insufficient, and there is an urgent need to develop more cost-effective sampling methods. A passive sampling tool named Chemcatcher was tested for monitoring NPEOs and NP in aqueous media. These environmentally harmful substances have been widely used in different household and industrial applications, and they affect aquatic ecosystems, for example, by acting as endocrine disrupting compounds. The suitability of different receiving phases which were sulfonated styrene–divinylbenzene reversed phase polymer (SDB-RPS), standard styrene–divinyl benzene polymer (SDB-XC) and C-18 (octadecyl) was assessed in laboratory and field trials. The effect of a diffusion membrane on the accumulation of studied compounds was also investigated. The SDB-XC and C-18 receiving phases collected the NPEOs and NP most effectively. The water flow affected the accumulation factor of the studied substances in the field trials, and the water concentrations calculated using sampling rates were tenfold lower than those measured with conventional spot sampling. The concentration of the analytes in spot samples taken from the sampling sites might be higher because in that case, the particle-bound fraction is also measured. The NPEOs readily attach to suspended matter, and therefore, the total concentration of such compounds in water is much higher. Also, the spot samples were not taken daily but once a week, while the passive samplers collected the compounds continuously for 2- or 4-week time periods. This may cause differences when comparing the results of those two methods as well. Both techniques can be applied for monitoring the concentration levels at different sampling sites, but the calculated and measured analyte concentrations in surrounding water are not necessarily comparable with each other. More experiments are still needed to study the effect of hydrological issues and humic substances on the accumulation of chemicals. However, the Chemcatcher passive sampler gives valuable information about the mean concentration levels of studied compounds during 2- or 4-week sampling period. This is important for comparison of annual monitoring results, especially in sampling sites with rapidly fluctuating concentrations.
Показать больше [+] Меньше [-]Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia Полный текст
2014
Barhoumi, Badreddine | LeMenach, Karyn | Dévier, Marie-Hélène | El megdiche, Yassine | Hammami, Bechir | Ameur, Walid Ben | Hassine, Sihem Ben | Cachot, Jérôme | Budzinski, Hélène | Driss, Mohamed Ridha
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in 18 surface sediment samples collected from Bizerte lagoon, Tunisia. The total concentrations of ten PCBs (∑PCBs) and of four OCPs (∑OCPs) in the sediments from this area ranged from 0.8 to 14.6 ng g⁻¹dw (average value, 3.9 ng g⁻¹dw) and from 1.1 to 14.0 ng g⁻¹dw (average value, 3.3 ng g⁻¹dw), respectively. Among the OCPs, the range of concentrations of dichlorodiphenyltrichloroethane and its metabolites (DDTs) and hexachlorobenzene (HCB) were 0.3–11.5 ng g⁻¹dw (1.9 ng g⁻¹dw) and 0.6–2.5 ng g⁻¹dw (1.4 ng g⁻¹dw), respectively. Compositional analyses of the POPs indicated that PCB 153, 138 and 180 were the predominant congeners accounting for 60 % of the total PCBs. In addition, p,p′-DDT was found to be the dominant DDTs, demonstrating recent inputs in the environment. Compared with some other regions of the world, the Bizerte lagoon exhibited low levels of PCBs and moderate levels of HCB and DDTs. The high ratios ΣPCBs/ΣDDTs indicated predominant industrial versus agricultural activities in this area. According to the established guidelines for sediment quality, the risk of adverse biological effects from such levels of OCPs and PCBs, as recorded at most of the study sites, was insignificant. However, the higher concentrations in stations S1 and S3 could cause biological damage.
Показать больше [+] Меньше [-]